zoukankan      html  css  js  c++  java
  • 【BZOJ3244】【NOI2013】树的计数(神仙题)

    【BZOJ3244】【NOI2013】树的计数(神仙题)

    题面

    BZOJ

    这题有点假,(bzoj)上如果要交的话请输出(ans-0.001,ans,ans+0.001)

    题解

    数的形态和编号没有关系,因此对于(bfs)序重标号,同时修改一下(dfs)序方便做题。
    因为(bfs)的层数等于树高,所以我们相当于要把(bfs)划分为若干段,
    那么,每一种(bfs)划分显然要么不合法,要么对应一种树的形态。
    那么,我们来考虑(bfs)划分的几个限制。
    首先有一个很明显的限制:
    如果划分了一段([L,R]),那么(dfn[L]<dfn[L+1]<...<dfn[R])
    原因很简单,因为一个点的所有儿子对应的出现顺序在(bfs)(dfs)序中相同
    显然所有儿子都是从左往右遍历,因此这一项显然成立。
    (pos)(dfs)序的反数组,
    考虑(dfs)序中相邻的两个元素(x,x+1)
    显然要么是父子关系,要么是兄弟关系,要么(x+1)(x)祖先的儿子。
    所以可以列出不等式(dep[x+1]le dep[x]+1)
    当然了,还有一个约束,根节点后面必须断开。

    我们构建一个数组(s)(s[i]=1)的话就表示(i)(i+1)必须断开

    归类一下,约束条件有三项:
    1.根节点后面必须断开,而根节点一定是(bfs)序中的(1)
    2.同一段([l,r])中的所有点满足(dfs)序递增,即如果(pos[i]>pos[i+1]),那么必须断开,也就是(s[i]=1)
    3.如果(dfn[i]<dfn[i+1]),那么,(sum_{j=dfn[i]}^{dfn[i+1]-1} s[i]le 1),这个式子在计算的时候需要满足(dfn[i]lt dfn[i+1]),而根据推导(dep[i+1]-dep[i]le 1)

    如果知道了(s),那么(1+sum s[i])就是树高,也就是(bfs)序分开的段数。

    考虑一下贡献是怎么产生的。
    两个相邻的(bfs)序之间要么不能断开,贡献为(0)
    要么必须断开,贡献为(1)
    要么随意,贡献为(0.5)
    只需要利用所有约束条件确定每个位置的贡献就好啦。
    我是看得LCF学长的blog

    #include<iostream>
    #include<cstdio>
    using namespace std;
    #define RG register
    #define MAX 222222
    inline int read()
    {
        RG int x=0,t=1;RG char ch=getchar();
        while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
        if(ch=='-')t=-1,ch=getchar();
        while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
        return x*t;
    }
    double ans;
    int n,a[MAX],d[MAX],s[MAX];
    int main()
    {
    	n=read();ans=1;s[1]=1;s[2]=-1;
    	for(int i=1;i<=n;++i)a[d[i]=read()]=i;
    	for(int i=1;i<=n;++i)d[a[read()]]=i;
    	for(int i=1;i<=n;++i)a[d[i]]=i;
    	for(int i=2;i<=n;++i)if(a[i]<a[i-1])s[i-1]++,s[i]--,++ans;
    	for(int i=2;i<=n;++i)if(d[i-1]<d[i]-1)s[d[i-1]]++,s[d[i]]--;
    	for(int i=1,t=0;i<n;++i)t+=s[i],ans+=(!t)?0.5:0;
    	printf("%.3lf
    ",ans+1);
    	return 0;
    }
    
    
  • 相关阅读:
    CSS 之 div中文字超出时自动换行
    架构设计分享之权限系统(看图说话)
    perl杂项
    nginx比较apache
    Apache与Nginx的优缺点比较
    DVB系统中PCR的生成和PCR校正
    相关软件测试工具
    我遇到的有趣面试题:破解程序
    OpenStack 部署运维实战
    一些大公司的开源项目及代码托管平台
  • 原文地址:https://www.cnblogs.com/cjyyb/p/9275407.html
Copyright © 2011-2022 走看看