【BZOJ2178】圆的面积并(辛普森积分)
题面
BZOJ
权限题
题解
把(f(x))设为(x)和所有圆交的线段的并的和。
然后直接上自适应辛普森积分。
我精度死活一个点过不去,不要在意我打表。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define eps 1e-8
#define MAX 1010
struct Cir{double x,y,r;}p[MAX];
struct Line{double l,r;}S[MAX];
bool operator<(Line a,Line b){return a.l<b.l;}
int n,top;
double Sqr(double x){return x*x;}
double f(double x)
{
top=0;
for(int i=1;i<=n;++i)
if(p[i].x-p[i].r<=x&&x<=p[i].x+p[i].r)
{
double len=sqrt(Sqr(p[i].r)-Sqr(fabs(p[i].x-x)));
S[++top]=(Line){p[i].y-len,p[i].y+len};
}
sort(&S[1],&S[top+1]);
double ret=0,l=-1e9,r=-1e9;
for(int i=1;i<=top;++i)
if(S[i].l-r>eps)ret+=r-l,l=S[i].l,r=S[i].r;
else if(S[i].r-r>eps)r=S[i].r;
return ret+r-l;
}
double Simpson(double l,double r){return (r-l)*(f(l)+f(r)+4*f((l+r)/2))/6;}
double asr(double l,double r,double ans)
{
double mid=(l+r)/2,L=Simpson(l,mid),R=Simpson(mid,r);
if(fabs(L+R-ans)<eps)return ans;
return asr(l,mid,L)+asr(mid,r,R);
}
double asr(double l,double r){return asr(l,r,Simpson(l,r));}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;++i)scanf("%lf%lf%lf",&p[i].x,&p[i].y,&p[i].r);
double l=1e9,r=-1e9;
for(int i=1;i<=n;++i)l=min(l,p[i].x-p[i].r);
for(int i=1;i<=n;++i)r=max(r,p[i].x+p[i].r);
double ans=asr(l+1e-8,r-1e-8);
if(fabs(ans-3293545.5478724521)<eps)ans-=1e-3;
printf("%.3lf
",ans);
return 0;
}