zoukankan      html  css  js  c++  java
  • 电磁学10.安培环路定律

    安培环路定律

    由毕奥法萨尔定律我们知道,在无限长载流导线中,在半径为 (r) 的区域磁感应强度为

    [B=frac{ mu _0 I}{2 pi r} ]


    如果把该圆无限分割成小的微元 (dl) (与前面导线长度微元dl区分)。计算 (B d)l 沿着该闭合圆周的积分,可得

    [ointoverset{ ightharpoonup }{B} overset{ ightharpoonup }{ ext{dl}}=B 2 pi r ]

    [B 2 pi r= mu _0 I ]

    [ointoverset{ ightharpoonup }{B} overset{ ightharpoonup }{ ext{dl}}=mu _0 I ]

    这个式子告诉我们,不管绕多远,(Bdl) 的积分都等于 (mu _0 I)

    因为 B 与 r 半径成反比。

    注意,(B)(dl) 是点乘。

    安培大佬发现,不一定非要沿着圆周运动才能得到 (mu _0 I) 。可以沿着任意弯曲的闭合路径积分

    结果仍然可以得到

    [ointoverset{ ightharpoonup }{B} overset{ ightharpoonup }{ ext{dl}}=mu _0 I ]

    定义:

    在稳恒磁场中,磁感应强度B沿任何闭合路径的线积分,等于这闭合路径所包围的各个电流的代数和乘以磁导率。这个结论称为安培环路定理(Ampere circuital theorem)

    这个定义中,被“包围”的定义有些不太完善,下面进行补充。

    任意选择一条闭合路径,我们需要给这条闭合路径加一个开曲面,任何开曲面都可以,但是必须连接到该闭合路径上(就像一个袋子)。

    只有穿过这个开曲面的电流,我们才真正地说她是“被包围”,可以说,就是穿过闭合路径和开曲面的电流。

    从开口环路看进去,如果按环路顺时针CW转动为正方向,根据右手定则,

    1. 如果电流产生的磁场是顺时针的,则规定 (I>0) .
    2. 如果电流产生的磁场是逆时针的,则规定 (I<0) .

    如果按环路逆时针CCW转动为正方向,

    1. 如果电流产生的磁场是逆时针的,则规定 (I>0) .
    2. 如果电流产生的磁场是顺时针的,则规定 (I<0) .

    但我们应用的时候,都会选择简单的路径去简化计算。

    通电导线的磁场

    导线半径为 (R) ,假设电流均匀地分布在导线上,电流密度均匀,计算导线任意的磁场。

    选择一个半径为 (r) 的圆形路径,因为圆的对称性,能保证路径上每处磁场相等。选择一个开曲面连接到环路上。因为电流是朝向纸面向外,所以根据右手定则,选择环路逆时针转动方向为正方形,这样电流也是正的。

    (r>R)

    根据安培环路定理可得

    [B 2pi r = mu _0 I ightarrow B= frac{ mu _0 I}{2 pi r} ]

    此时磁感应强度大小随环路半径 (frac{1}{r}) 下降。

    (r<R)

    因为此时不是全部电流都在环路里面,所以需要注意是多少电流,因为前面假设在导线中电流密度一样,所以环路内的电流其实就是横截面积之比 (frac{2 pi r^2}{2 pi R^2}) 乘以总电流 (I)

    [B 2pi r = mu _0 frac{r^2}{R^2}I ightarrow B= frac{ mu _0 I r}{2 pi R^{2}} ]

    此时磁感应强度大小随环路半径 (r) 线性增加。哇,好神奇是不是。

    (r=R)

    上面两个式子的结果都是一样的,此时r变成R:

    [B= frac{ mu _0 I}{2 pi R} ]

    如果横轴是r,纵轴是磁感应强度B,可以画出来:

    导线表面上磁感应强度是最大的。

    通电螺线管的磁场

    先感性认识一下,看下图有一个电流环(理解随便找的),点圆表示朝纸面向外,磁场呈逆时针,叉圆表示朝纸面向里,磁场呈顺时针。两者中间就会有很少数磁场线是直线,多数磁场线是朝两边弯曲发散的。

    但如果在旁边有相同的电流环,下面左图,右边的这些电流环会使发散的磁场线收缩起来,内部就会形成近乎恒定的磁场,

    电流环缠绕越紧,在内部,磁场的恒定程度越大,如下面右图。而外部的磁感应强度是很小的。

    那么,螺线管内部磁感应强度是多大呢?

    假设螺线管长度为大写 (L) ,螺线管有 (N) 匝,内部磁场恒定。从左边看进去,电流顺时针流动,根据右手定则我们知道磁场自左向右,假设螺线管外部的磁场为0。

    应用安培环路定理我们首先需要选择一条闭合路径——一条长边为 (l) 在螺线管中间的矩形。

    按矩形的四条边分为4个部分。

    [egin{align} oint overset{ ightharpoonup }{B} overset{ ightharpoonup }{ ext{dl}}&=int_1 overset{ ightharpoonup }{B} overset{ ightharpoonup }{ ext{dl}} + int_2 overset{ ightharpoonup }{B} overset{ ightharpoonup }{ ext{dl}}+ int_3 overset{ ightharpoonup }{B} overset{ ightharpoonup }{ ext{dl}} +int_4 overset{ ightharpoonup }{B} overset{ ightharpoonup }{ ext{dl}}\ &=0+0+Bl+0\ &=Bl end{align} ]

    因为

    对第一条边,我们假设螺线管外部磁场为0,所以积分为0

    对第二、四条边,在螺线管外面的部分磁场为0,这部分积分为0,在螺线管内部,因为 (dl) 与磁场方向垂直,所以点乘结果为0。

    故只有第三条边有贡献。

    用矩形边内的纸面作为我们的曲面,穿过曲面的电流是多少,需要知道线圈穿过这个曲面多少次,用比例关系可以求出,(L) 上有 (N) 匝,所以 (l) 上匝数为

    [n=frac{l N}{L} ]

    所以穿过曲面总的电流就是

    [frac{l N}{L} I ]

    [Bl=mu _0 frac{l N}{L} I ]

    可得

    [B=mu _0 frac{ N}{L} I ]

    在螺线管的长度远大于半径时,这是对螺线管内部磁场一个很好的近似。

    磁感应强度正比于单位长度的匝数。因为第一匝线圈产生的磁场类似磁偶极子,在远处,磁场削减的很快,可能几乎感受不到,所以即使多匝,但每匝距离较远,在另一端磁感应强度也不会明显增强。而增大单位长度的匝数,实际上是把每个匝数的磁场叠加,多匝进行压缩在一起,磁场叠加。

  • 相关阅读:
    29 练习:利用socketserver实现TCP协议下登录认证下载
    28 练习:TCP协议 UDP协议 黏包
    Python基础学习(28)TCP协议的Python实现 UDP协议的Python实现 黏包 利用struct模块解决黏包
    Python 大作业4:选课系统
    Python基础学习(27)网络编程基本概念 C/S架构与B/S架构 OSI七层协议 包的导入
    26 练习题:反射
    Python基础学习(26)classmethod/staticmethod 装饰器 部分内置魔术方法
    25 练习题:super方法 封装 property装饰器 反射
    Python基础学习笔记(25)super方法 封装 property装饰器 反射
    2020 8/10每日日报
  • 原文地址:https://www.cnblogs.com/ckk-blog/p/14403630.html
Copyright © 2011-2022 走看看