题意:
有n个区间,每个区间只能有一个斑点奶牛,问最多有几个斑点奶牛。
思路:
首先要处理出每个点的L【i】,R【i】。
L【i】表示L【i】~i-1之间一定有一个点。i也是选中的。
R【i】表示R【i】~i之间只能有i这个点是选中的。
通过处理出L【i】和R【i】,dp【i】 = 最大的L【i】到R【i】间dp值 + 1。这里用线段树优化,也可以用优先队列。
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
#include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <iomanip> #include <bitset> #include <cctype> #include <cstdio> #include <string> #include <vector> #include <stack> #include <cmath> #include <queue> #include <list> #include <map> #include <set> #include <cassert> using namespace std; #define lson (l , mid , rt << 1) #define rson (mid + 1 , r , rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << " "; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; //typedef __int128 bll; typedef pair<ll ,ll > pll; typedef pair<int ,int > pii; typedef pair<int,pii> p3; typedef pair<ll,int>pli; //priority_queue<int> q;//这是一个大根堆q //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q #define fi first #define se second //#define endl ' ' #define OKC ios::sync_with_stdio(false);cin.tie(0) #define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行 #define REP(i , j , k) for(int i = j ; i < k ; ++i) #define max3(a,b,c) max(max(a,b), c); #define min3(a,b,c) min(min(a,b), c); //priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //2147483647 const ll nmos = 0x80000000; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3f; //18 const int mod = 1e9+9; const double esp = 1e-8; const double PI=acos(-1.0); const double PHI=0.61803399; //黄金分割点 const double tPHI=0.38196601; template<typename T> inline T read(T&x){ x=0;int f=0;char ch=getchar(); while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar(); while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar(); return x=f?-x:x; } /*-----------------------showtime----------------------*/ const int maxn = 200009; int R[maxn],L[maxn]; int mx[maxn*4]; int dp[maxn]; int query(int L,int R,int l,int r,int rt){ if(l>=L && r<=R){ return mx[rt]; } int mid = (l + r) >> 1; int x = -inf; if(mid >= L) x = max(x, query(L,R,l,mid,rt<<1)); if(mid < R) x = max(x, query(L,R,mid+1,r,rt<<1|1)); return x; } void update(int p,int c,int l,int r,int rt){ if(l == r) { mx[rt] = c; return; } int mid = (l + r) >> 1; if(mid >= p) update(p,c,l,mid,rt<<1); else update(p,c,mid+1,r,rt<<1|1); mx[rt] = max(mx[rt<<1], mx[rt<<1|1]); } int main(){ int n,m; scanf("%d%d", &n, &m); for(int i=1; i<=n+1; i++) R[i] = i-1; for(int i=1; i<=m; i++){ int x,y; scanf("%d%d", &x, &y); L[y+1] = max(L[y+1],x); R[y] = min(R[y], x-1); } memset(mx, -inf, sizeof(mx)); for(int i=1; i<=n+1; i++) L[i] = max(L[i-1] , L[i]); for(int i=n; i>=1 ; i--) R[i] = min(R[i+1], R[i]); update(1,0,1,n+2,1); for(int i=1; i<=n+1; i++){ if(L[i] <= R[i]) dp[i] = query(L[i]+1, R[i]+1, 1, n+2, 1) + 1; else dp[i] = -inf; update(i+1,dp[i],1,n+2,1); } // for(int i=1; i<=n+1; i++){ // cout<<L[i]<<" -- "<<R[i]<<endl; // } if(dp[n+1] <=1)puts("-1"); else printf("%d ", dp[n+1] - 1); return 0; }