题意:q(5000)次询问,问在区间中随意取两个值,这两个值恰好相同的概率是多少?分数表示;
感觉自己复述的题意极度抽象,还是原题意有趣(逃;
思路:设在L到R这个区间中,x这个值得个数为a个,y这个值的个数为b个,z这个值的个数为c个。
那么答案即为 (a*(a-1)/2+b*(b-1)/2+c*(c-1)/2....)/((R-L+1)*(R-L)/2)
化简得: (a^2+b^2+c^2+...x^2-(a+b+c+.....)) / ((R-L+1)*(R-L))
显然其中(a+b+c+.....)就是区间的长度,每个值得个数总和。
即: (a^2+b^2+c^2+...x^2-(R-L+1))/((R-L+1)*(R-L))
每次sum记录a^2+b^2+c^2+...x^2,用莫队转移即可。
#include <iostream> #include <cstdio> #include <algorithm> #include <cstring> #include <string> #include <vector> #include <map> #include <set> #include <queue> #include <list> #include <cstdlib> #include <iterator> #include <cmath> #include <iomanip> #include <bitset> #include <cctype> using namespace std; //#pragma comment(linker, "/STACK:102400000,102400000") //c++ #define lson (l , mid , rt << 1) #define rson (mid + 1 , r , rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << " "; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; typedef pair<ll ,ll > pll; typedef pair<int ,int > pii; //priority_queue<int> q;//这是一个大根堆q //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q #define fi first #define se second #define endl ' ' #define OKC ios::sync_with_stdio(false);cin.tie(0) #define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行 #define REP(i , j , k) for(int i = j ; i < k ; ++i) //priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //2147483647 const ll nmos = 0x80000000; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3f; //18 template<typename T> inline T read(T&x){ x=0;int f=0;char ch=getchar(); while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar(); while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar(); return x=f?-x:x; } // #define _DEBUG; //*// #ifdef _DEBUG freopen("input", "r", stdin); // freopen("output.txt", "w", stdout); #endif /*-----------------------show time----------------------*/ const int B = 233; #define bel(x) ((x-1)/B + 1) int n,m; ll sum = 0; const int maxn = 50009; struct node { ll le,ri; int id; }q[maxn]; struct res{ ll a,b; }ans[maxn]; int cnt[maxn],col[maxn]; bool cmp(node a,node b){ if(bel(a.le) == bel(b.le)){ return a.ri < b.ri; } return bel(a.le) < bel(b.le); } void del(int x){ sum = sum - 1ll * cnt[x] * cnt[x]; cnt[x]--; sum = sum + 1ll * cnt[x] * cnt[x]; } void add(int x){ sum = sum - 1ll * cnt[x] * cnt[x]; cnt[x] ++; sum = sum + 1ll * cnt[x] * cnt[x]; } int main(){ scanf("%d%d", &n, &m); for(int i=1; i<=n; i++) scanf("%d", &col[i]); for(int i=1; i<=m; i++){ scanf("%lld%lld", &q[i].le, &q[i].ri); q[i].id = i; } sort(q+1,q+1+m,cmp); int pl = 1, pr = 0; sum = 0; for(int i=1; i<=m; i++){ while(pl < q[i].le) del(col[pl++]); while(pl > q[i].le) add(col[--pl]); while(pr < q[i].ri) add(col[++pr]); while(pr > q[i].ri) del(col[pr--]); if(q[i].le == q[i].ri){ ans[q[i].id].a = 0; ans[q[i].id].b = 1; continue; } ans[q[i].id].a = sum - (q[i].ri - q[i].le + 1); ans[q[i].id].b = (q[i].ri - q[i].le + 1) * (q[i].ri - q[i].le); } for(int i=1; i<=m; i++){ ll tmp = __gcd(ans[i].a,ans[i].b); if(tmp==0){ printf("%lld/%lld ", ans[i].a, ans[i].b); } else printf("%lld/%lld ", ans[i].a/tmp, ans[i].b/tmp); } return 0; }