zoukankan      html  css  js  c++  java
  • BZOJ2152 聪聪可可 (点分治)

    2152: 聪聪可可

    题意:

      在一棵边带权的树中,问任取两个点,这两个点间的权值和是3的倍数的概率。

    思路:

      经典的点分治题目。

      利用点分治在计算所有路径长度,把路径长度对3取模,用t[0],t[1],t[2]分别记录模为0、1、2的情况,那么显然答案就是t[1]*t[2]*2+t[0]*t[0]。

    #include <algorithm>
    #include  <iterator>
    #include  <iostream>
    #include   <cstring>
    #include   <cstdlib>
    #include   <iomanip>
    #include    <bitset>
    #include    <cctype>
    #include    <cstdio>
    #include    <string>
    #include    <vector>
    #include     <cmath>
    #include     <queue>
    #include      <list>
    #include       <map>
    #include       <set>
    using namespace std;
    //#pragma GCC optimize(3)
    //#pragma comment(linker, "/STACK:102400000,102400000")  //c++
    #define lson (l , mid , rt << 1)
    #define rson (mid + 1 , r , rt << 1 | 1)
    #define debug(x) cerr << #x << " = " << x << "
    ";
    #define pb push_back
    #define pq priority_queue
    
    
    
    typedef long long ll;
    typedef unsigned long long ull;
    
    typedef pair<ll ,ll > pll;
    typedef pair<int ,int > pii;
    typedef pair<int,pii> p3;
    
    //priority_queue<int> q;//这是一个大根堆q
    //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
    #define fi first
    #define se second
    //#define endl '
    '
    
    #define OKC ios::sync_with_stdio(false);cin.tie(0)
    #define FT(A,B,C) for(int A=B;A <= C;++A)  //用来压行
    #define REP(i , j , k)  for(int i = j ; i <  k ; ++i)
    //priority_queue<int ,vector<int>, greater<int> >que;
    
    const ll mos = 0x7FFFFFFFLL;  //2147483647
    const ll nmos = 0x80000000LL;  //-2147483648
    const int inf = 0x3f3f3f3f;
    const ll inff = 0x3f3f3f3f3f3f3f3fLL; //18
    const int mod = 998244353;
    
    const double PI=acos(-1.0);
    
    // #define _DEBUG;         //*//
    #ifdef _DEBUG
    freopen("input", "r", stdin);
    // freopen("output.txt", "w", stdout);
    #endif
    /*-----------------------showtime----------------------*/
                const int maxn = 1e5+9;
                int root = 0,S,mx;
                int n,k;
                int sz[maxn],f[maxn],dis[maxn],cnt;
                int t[4];
                bool used[maxn];
                struct node
                {
                    int to,w,nx;
                }e[maxn];
                int h[maxn],tot = 0;
                void add(int u,int v,int w){
                    e[tot].to = v;
                    e[tot].w = w;
                    e[tot].nx = h[u];
                    h[u] = tot++;
                }
                void getRoot(int u, int fa){
                    sz[u] = 1,f[u] = 1;
                    for(int i = h[u] ; ~i; i= e[i].nx){
                        int v = e[i].to;
                        if(used[v] || fa == v)continue;
                        getRoot(v,u);
                        sz[u] += sz[v];
                        f[u] = max(f[u] , sz[v]);
                    }
                    f[u] = max(f[u],S - sz[u]);
                    if(f[u] < mx){root = u;mx = f[u];}
                }
    
                void getDis(int u,int fa,int D){
                    for(int i=h[u] ; ~i; i=e[i].nx){
                        int v = e[i].to;
                        if(used[v]||v == fa)continue;
                        dis[++cnt] = D + e[i].w;
                        getDis(v,u,dis[cnt]);
                    }
                }
    
                int getAns(int x,int D){
                    dis[cnt = 1] = D;
                    getDis(x,0,D);
                    // sort(dis+1,dis+1+cnt);
                    int ans = 0;
                    t[0] = t[1] = t[2] = 0;
                    for(int i=1; i<=cnt; i++){
                        t[dis[i]%3]++;
                    }
                    ans += t[1]*t[2]*2 + t[0]*t[0];
                    return ans;
                }
    
                int Divide(int x){
                    used[x] = true;
                    ll ans = getAns(x,0);
                    for(int i=h[x]; ~i; i= e[i].nx){
                        int v = e[i].to;
                        if(used[v])continue;
                        ans -= getAns(v,e[i].w);
                        mx = inf,S = sz[v];
                        getRoot(v,x);ans += Divide(root);
                    }
                    return ans;
                }
                ll gcd(ll a,ll b){
                    if(b==0)return a;
                    return gcd(b,a%b);
                }
    int main(){
                
                while(~scanf("%d", &n) && n)
                {
                    memset(h,-1,sizeof(h));
                    memset(used,false,sizeof(used));
                    tot = 0;
                    for(int i=1; i<n; i++){
                        int u,v,c;
                        scanf("%d%d%d", &u, &v,&c);
                        add(u,v,c);
                        add(v,u,c);
                    }
                    S = n;mx = inf;
                    getRoot(1,-1);
                    int r = n*n;
                    int ans = Divide(root);
                    int tmp = gcd(ans,r);
                    printf("%d/%d
    ",ans/tmp,r/tmp);
                }
                return 0;
    }
    BZOj2152
  • 相关阅读:
    Centos下安装Redis
    Web框架的本质
    DOM Event
    HTML DOM
    JavaScript运算符
    JavaScript基础
    开发中常用的插件与框架
    selector模块
    IO模型(阻塞、非阻塞、多路复用与异步)
    事件驱动模型
  • 原文地址:https://www.cnblogs.com/ckxkexing/p/9508552.html
Copyright © 2011-2022 走看看