zoukankan      html  css  js  c++  java
  • URAL-1627-Join 生成树计数

    传送门:https://vjudge.net/problem/URAL-1627

    题意:

      给定一个n*m的图,问图中“.”的点生成的最小生成树有多少个。

    思路:

      生成树的计数,需要用Kirchhoff矩阵。

     

    实际中只开了一个矩阵,如果有一条边(u,v),那么把a[u][v]=a[v][u] = -1, a[u][u]++, a[v][v]++;

    #include <algorithm>
    #include  <iterator>
    #include  <iostream>
    #include   <cstring>
    #include   <cstdlib>
    #include   <iomanip>
    #include    <bitset>
    #include    <cctype>
    #include    <cstdio>
    #include    <string>
    #include    <vector>
    #include     <stack>
    #include     <cmath>
    #include     <queue>
    #include      <list>
    #include       <map>
    #include       <set>
    #include   <cassert>
    
    using namespace std;
    //#pragma GCC optimize(3)
    //#pragma comment(linker, "/STACK:102400000,102400000")  //c++
    // #pragma GCC diagnostic error "-std=c++11"
    // #pragma comment(linker, "/stack:200000000")
    // #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    // #pragma GCC optimize("-fdelete-null-pointer-checks,inline-functions-called-once,-funsafe-loop-optimizations,-fexpensive-optimizations,-foptimize-sibling-calls,-ftree-switch-conversion,-finline-small-functions,inline-small-functions,-frerun-cse-after-loop,-fhoist-adjacent-loads,-findirect-inlining,-freorder-functions,no-stack-protector,-fpartial-inlining,-fsched-interblock,-fcse-follow-jumps,-fcse-skip-blocks,-falign-functions,-fstrict-overflow,-fstrict-aliasing,-fschedule-insns2,-ftree-tail-merge,inline-functions,-fschedule-insns,-freorder-blocks,-fwhole-program,-funroll-loops,-fthread-jumps,-fcrossjumping,-fcaller-saves,-fdevirtualize,-falign-labels,-falign-loops,-falign-jumps,unroll-loops,-fsched-spec,-ffast-math,Ofast,inline,-fgcse,-fgcse-lm,-fipa-sra,-ftree-pre,-ftree-vrp,-fpeephole2",3)
    
    #define lson (l , mid , rt << 1)
    #define rson (mid + 1 , r , rt << 1 | 1)
    #define debug(x) cerr << #x << " = " << x << "
    ";
    #define pb push_back
    #define pq priority_queue
    
    
    
    typedef long long ll;
    typedef unsigned long long ull;
    
    typedef pair<ll ,ll > pll;
    typedef pair<int ,int > pii;
    typedef pair<int,pii> p3;
    
    //priority_queue<int> q;//这是一个大根堆q
    //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
    #define fi first
    #define se second
    //#define endl '
    '
    
    #define OKC ios::sync_with_stdio(false);cin.tie(0)
    #define FT(A,B,C) for(int A=B;A <= C;++A)  //用来压行
    #define REP(i , j , k)  for(int i = j ; i <  k ; ++i)
    #define max3(a,b,c) max(max(a,b), c); 
    //priority_queue<int ,vector<int>, greater<int> >que;
    
    const ll mos = 0x7FFFFFFF;  //2147483647
    const ll nmos = 0x80000000;  //-2147483648
    const int inf = 0x3f3f3f3f;       
    const ll inff = 0x3f3f3f3f3f3f3f3f; //18
    const int mod = 1e9;
    const double esp = 1e-8;
    const double PI=acos(-1.0);
    const double PHI=0.61803399;    //黄金分割点
    const double tPHI=0.38196601;
    
    
    template<typename T>
    inline T read(T&x){
        x=0;int f=0;char ch=getchar();
        while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar();
        while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
        return x=f?-x:x;
    }
    
    
    /*-----------------------showtime----------------------*/
                const int maxn = 300;
                char str[20];
                ll a[maxn][maxn];
                int g[maxn][maxn];
                int n,m,k;
                void cal(){
                    ll ans = 1;int sign = 0;
                    for(int i=1; i<=n; i++){        //当前行
                        for(int j=i+1; j<=n; j++){
                            int x = i, y = j;
                            while(a[y][i]){ //利用gcd的方法,不停地进行辗转相除,达到消去其他行对应列元素的目的
                                ll t = a[x][i] / a[y][i];
                                for(int k=i; k<=n; k++)
                                    a[x][k] = (a[x][k] - a[y][k]*t)%mod;
                                swap(x,y);
                            }
                            
                            if(x != i){     //奇数次交换,则D=-D'整行交换
                                for(int k = 1; k<=n; k++){
                                    swap(a[i][k], a[x][k]);
                                }
                                sign ^= 1;
                            }
                        }
                        if(a[i][i] == 0){   //斜对角中有一个0,则结果为0
                            puts("0");
                            return;
                        }
                        else ans = ans * a[i][i] %mod;
                    }
                    if(sign) ans *= -1;
                    if(ans < 0) ans += mod;
                    printf("%lld
    ", ans);
                }   
    int main(){
                while(~scanf("%d%d", &n, &m)){
                    k = 0;
                    for(int i=1; i<=n; i++){
                            scanf("%s", str);
                            for(int j=0; j<m; j++){
                                if(str[j] == '.')g[i][j+1] = ++k;
                            }
                    }
    
                    for(int i=1; i<=n; i++){
                        for(int j=1; j<=m; j++){
                            int u = g[i][j],v;
                            if(u > 0){
                                if(i +1 <= n && g[i+1][j]){
                                    v = g[i+1][j];
                                    a[u][v] = a[v][u] = -1;
                                    a[u][u]++;a[v][v]++;
                                }   
                                if(j + 1<=m && g[i][j+1]){
                                    v = g[i][j+1];
                                    a[u][v] = a[v][u] = -1;
                                    a[u][u]++;a[v][v]++;
                                }
                            }
                        }
                    }
                    n = k-1;
                    cal();
                }
                return 0;
    }
    URAL - 1627
  • 相关阅读:
    Delphi中Android运行和JNI交互分析
    C++ 中内存分配和回收
    Delphi Android程序启动过程
    Delphi XE的RTTI增强,动态Hook某些内部事件
    Win7下超级管理员创建普通权限任务
    再探Delphi2010 Class的构造和析构顺序
    Delphi2010新发现-类的构造和析构函数功能
    【背包专题】01背包
    Delphi2010的RTTI增强
    用WebBrowser实现HTML界面的应用和交互 good
  • 原文地址:https://www.cnblogs.com/ckxkexing/p/9697459.html
Copyright © 2011-2022 走看看