zoukankan      html  css  js  c++  java
  • HDU

     HDU - 4305

    题意:

        比较裸的一道生成树计数问题,构造Krichhoof矩阵,求解行列式即可。但是这道题还有一个限制,就是给定的坐标中,两点连线中不能有其他的点,否则这两点就不能连接。枚举点,用叉积计算是否共线即可。

    #include <algorithm>
    #include  <iterator>
    #include  <iostream>
    #include   <cstring>
    #include   <cstdlib>
    #include   <iomanip>
    #include    <bitset>
    #include    <cctype>
    #include    <cstdio>
    #include    <string>
    #include    <vector>
    #include     <stack>
    #include     <cmath>
    #include     <queue>
    #include      <list>
    #include       <map>
    #include       <set>
    #include   <cassert>
    
    using namespace std;
    //#pragma GCC optimize(3)
    //#pragma comment(linker, "/STACK:102400000,102400000")  //c++
    // #pragma GCC diagnostic error "-std=c++11"
    // #pragma comment(linker, "/stack:200000000")
    // #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    // #pragma GCC optimize("-fdelete-null-pointer-checks,inline-functions-called-once,-funsafe-loop-optimizations,-fexpensive-optimizations,-foptimize-sibling-calls,-ftree-switch-conversion,-finline-small-functions,inline-small-functions,-frerun-cse-after-loop,-fhoist-adjacent-loads,-findirect-inlining,-freorder-functions,no-stack-protector,-fpartial-inlining,-fsched-interblock,-fcse-follow-jumps,-fcse-skip-blocks,-falign-functions,-fstrict-overflow,-fstrict-aliasing,-fschedule-insns2,-ftree-tail-merge,inline-functions,-fschedule-insns,-freorder-blocks,-fwhole-program,-funroll-loops,-fthread-jumps,-fcrossjumping,-fcaller-saves,-fdevirtualize,-falign-labels,-falign-loops,-falign-jumps,unroll-loops,-fsched-spec,-ffast-math,Ofast,inline,-fgcse,-fgcse-lm,-fipa-sra,-ftree-pre,-ftree-vrp,-fpeephole2",3)
    
    #define lson (l , mid , rt << 1)
    #define rson (mid + 1 , r , rt << 1 | 1)
    #define debug(x) cerr << #x << " = " << x << "
    ";
    #define pb push_back
    #define pq priority_queue
    
    
    
    typedef long long ll;
    typedef unsigned long long ull;
    
    typedef pair<ll ,ll > pll;
    typedef pair<int ,int > pii;
    typedef pair<int,pii> p3;
    
    //priority_queue<int> q;//这是一个大根堆q
    //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
    #define fi first
    #define se second
    //#define endl '
    '
    
    #define OKC ios::sync_with_stdio(false);cin.tie(0)
    #define FT(A,B,C) for(int A=B;A <= C;++A)  //用来压行
    #define REP(i , j , k)  for(int i = j ; i <  k ; ++i)
    #define max3(a,b,c) max(max(a,b), c); 
    //priority_queue<int ,vector<int>, greater<int> >que;
    
    const ll mos = 0x7FFFFFFF;  //2147483647
    const ll nmos = 0x80000000;  //-2147483648
    const int inf = 0x3f3f3f3f;       
    const ll inff = 0x3f3f3f3f3f3f3f3f; //18
    const int mod = 10007;
    const double esp = 1e-8;
    const double PI=acos(-1.0);
    const double PHI=0.61803399;    //黄金分割点
    const double tPHI=0.38196601;
    
    
    template<typename T>
    inline T read(T&x){
        x=0;int f=0;char ch=getchar();
        while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar();
        while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
        return x=f?-x:x;
    }
    
    
    /*-----------------------showtime----------------------*/
                const int maxn = 500;
                int n,r;
                int a[maxn][maxn],fa[maxn];
                struct node
                {
                    int x,y;                
                }p[maxn];
                int find(int x){
                    if(fa[x] == x)return x;
                    return fa[x] = find(fa[x]);
                }
                void uni(int x,int y){
                    int px = find(x);
                    int py = find(y);
                    fa[px] = py;
                }
                 void cal(){
                    ll ans = 1;int sign = 0;
                    for(int i=1; i<=n; i++){        //当前行
                        for(int j=i+1; j<=n; j++){
                            int x = i, y = j;
                            while(a[y][i]){ //利用gcd的方法,不停地进行辗转相除,达到消去其他行对应列元素的目的
                                ll t = a[x][i] / a[y][i];
                                for(int k=i; k<=n; k++)
                                    a[x][k] = (a[x][k] - a[y][k]*t)%mod;
                                swap(x,y);
                            }
                            
                            if(x != i){     //奇数次交换,则D=-D'整行交换
                                for(int k = 1; k<=n; k++){
                                    swap(a[i][k], a[x][k]);
                                }
                                sign ^= 1;
                            }
                        }
                        if(a[i][i] == 0){   //斜对角中有一个0,则结果为0
                            puts("0");
                            return;
                        }
                        else ans = ans * a[i][i] %mod;
                    }
                    if(sign) ans *= -1;
                    if(ans < 0) ans += mod;
                    printf("%lld
    ", ans);
                }   
                double dis(int i,int j){
                    return sqrt(1.0*(p[i].x - p[j].x)*(p[i].x - p[j].x) + 1.0*(p[i].y - p[j].y)*(p[i].y - p[j].y));
                }
                bool check(int i,int k,int j){
                    return ((p[j].x - p[k].x)*(p[j].y - p[i].y) == (p[j].x - p[i].x)*(p[j].y - p[k].y)) 
                    &&(max(p[i].x,p[j].x) >= p[k].x) &&(min(p[i].x,p[j].x) <= p[k].x)
                    &&(max(p[i].y,p[j].y) >= p[k].y) &&(min(p[i].y,p[j].y) <= p[k].y);    
                }
    int main(){
                int t;  scanf("%d", &t);
                while(t--){
                    memset(a,0,sizeof(a));
                    scanf("%d%d", &n, &r);
                    for(int i=1; i<=n; i++)fa[i] = i;
                    for(int i=1; i<=n; i++){
                        scanf("%d%d", &p[i].x, &p[i].y);
                    }
                    for(int i=1; i<=n; i++){
                        for(int j=1; j<i; j++){
                            int ok = 1;
                            for(int k=1; k<=n; k++){
                                if(k==i||k==j)continue;
                                if(check(i,k,j)){ok=0;break;}
                            }
                            if(ok && dis(i,j) <= r){
                                a[i][j] = a[j][i] = -1;
                                a[i][i]++,a[j][j]++;
                                uni(i,j);
                            }
                        }
                    }
                    int c = 0;
                    for(int i=1; i<=n; i++){
                        if(fa[i] == i)c++;
                    }
                    if(c!=1)puts("-1");
                    else {
                        n--;
                        cal();
                    }
                }
                return 0;
    }
    HDU - 4305
  • 相关阅读:
    2018-2019-2 网络对抗技术 20165317 Exp5 MSF基础应用
    2018-2019-2 网络对抗技术 20165317 Exp4 恶意代码分析
    2018-2019-2 网络对抗技术 20165317 Exp3 免杀原理与实践
    2018-2019-2 网络对抗技术 20165317 Exp2 后门原理与实践
    2018-2019-2 20165317《网络对抗技术》Exp1 PC平台逆向破解
    2018-2019-2 《网络对抗技术》Exp0 Kali安装 Week1 20165317
    2018-2019-2 20165308《网络对抗技术》Exp9 Web安全基础
    2018-2019-2 网络对抗技术 20165308 Exp 8 Web基础
    2018-2019-2 20165308网络对抗技术 Exp6:信息收集与漏洞扫描
    20165308『网络对抗技术』Exp5 MSF基础应用
  • 原文地址:https://www.cnblogs.com/ckxkexing/p/9704052.html
Copyright © 2011-2022 走看看