zoukankan      html  css  js  c++  java
  • HDU

    HDU - 4370

    参考:https://www.cnblogs.com/hollowstory/p/5670128.html

    题意:

      给定一个矩阵C, 构造一个A矩阵,满足条件:

        1.X12+X13+...X1n=1
        2.X1n+X2n+...Xn-1n=1
        3.for each i (1<i<n), satisfies ∑Xki (1<=k<=n)=∑Xij (1<=j<=n).

      使得∑Cij*Xij(1<=i,j<=n)最小。

    思路:

      理解条件之前先转换一下思维,将矩阵C看做描述N个点花费的邻接矩阵
      再来看三个条件:
        条件一:表示1号点出度为1
        条件二:表示n号点入度为1
        条件三:表示k( 1 < k < n )号点出度等于入度
      最后再来看看题目要求,∑Cij*Xij(1<=i,j<=n),很明显,这是某个路径的花费,而路径的含义可以有以下两种:
      一:1号点到n号点的花费
      二:1号点经过其它点成环,n号点经过其它点成环,这两个环的花费之和
      于是,就变成了一道简单的最短路问题
      关于环花费的算法,可以改进spfa算法,初始化dis[start] = INF,且一开始让源点之外的点入队
    #include <algorithm>
    #include  <iterator>
    #include  <iostream>
    #include   <cstring>
    #include   <cstdlib>
    #include   <iomanip>
    #include    <bitset>
    #include    <cctype>
    #include    <cstdio>
    #include    <string>
    #include    <vector>
    #include     <stack>
    #include     <cmath>
    #include     <queue>
    #include      <list>
    #include       <map>
    #include       <set>
    #include   <cassert>
    
    using namespace std;
    //#pragma GCC optimize(3)
    //#pragma comment(linker, "/STACK:102400000,102400000")  //c++
    // #pragma GCC diagnostic error "-std=c++11"
    // #pragma comment(linker, "/stack:200000000")
    // #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    // #pragma GCC optimize("-fdelete-null-pointer-checks,inline-functions-called-once,-funsafe-loop-optimizations,-fexpensive-optimizations,-foptimize-sibling-calls,-ftree-switch-conversion,-finline-small-functions,inline-small-functions,-frerun-cse-after-loop,-fhoist-adjacent-loads,-findirect-inlining,-freorder-functions,no-stack-protector,-fpartial-inlining,-fsched-interblock,-fcse-follow-jumps,-fcse-skip-blocks,-falign-functions,-fstrict-overflow,-fstrict-aliasing,-fschedule-insns2,-ftree-tail-merge,inline-functions,-fschedule-insns,-freorder-blocks,-fwhole-program,-funroll-loops,-fthread-jumps,-fcrossjumping,-fcaller-saves,-fdevirtualize,-falign-labels,-falign-loops,-falign-jumps,unroll-loops,-fsched-spec,-ffast-math,Ofast,inline,-fgcse,-fgcse-lm,-fipa-sra,-ftree-pre,-ftree-vrp,-fpeephole2",3)
    
    #define lson (l , mid , rt << 1)
    #define rson (mid + 1 , r , rt << 1 | 1)
    #define debug(x) cerr << #x << " = " << x << "
    ";
    #define pb push_back
    #define pq priority_queue
    
    
    
    typedef long long ll;
    typedef unsigned long long ull;
    
    typedef pair<ll ,ll > pll;
    typedef pair<int ,int > pii;
    typedef pair<int,pii> p3;
    
    //priority_queue<int> q;//这是一个大根堆q
    //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
    #define fi first
    #define se second
    //#define endl '
    '
    
    #define OKC ios::sync_with_stdio(false);cin.tie(0)
    #define FT(A,B,C) for(int A=B;A <= C;++A)  //用来压行
    #define REP(i , j , k)  for(int i = j ; i <  k ; ++i)
    #define max3(a,b,c) max(max(a,b), c); 
    //priority_queue<int ,vector<int>, greater<int> >que;
    
    const ll mos = 0x7FFFFFFF;  //2147483647
    const ll nmos = 0x80000000;  //-2147483648
    const int inf = 0x3f3f3f3f;       
    const ll inff = 0x3f3f3f3f3f3f3f3f; //18
    // const int mod = 10007;
    const double esp = 1e-8;
    const double PI=acos(-1.0);
    const double PHI=0.61803399;    //黄金分割点
    const double tPHI=0.38196601;
    
    
    template<typename T>
    inline T read(T&x){
        x=0;int f=0;char ch=getchar();
        while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar();
        while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
        return x=f?-x:x;
    }
    
    
    /*-----------------------showtime----------------------*/
                const int maxn = 309;
                int n;
                int dis[maxn],a[maxn][maxn],vis[maxn];
                void spfa(int s){
                    stack<int>q;
                    for(int i=1; i<=n; i++){
                        dis[i] = a[s][i];
                        if(i!=s){
                            q.push(i);
                            vis[i] = true;
                        } 
                        else vis[i] = false;
                    }
                    dis[s] = inf;
                    while(!q.empty()){
                        int u = q.top();q.pop();
                        vis[u] = false;
                        for(int i=1; i<=n; i++){
                            if(u==i)continue;
                            if(dis[i] > dis[u] + a[u][i]){
                                dis[i] = dis[u] + a[u][i];
                                if(vis[i] == false)q.push(i), vis[i] = true;
                            }
                        }
                    }
                }
    
    int main(){
                while(~scanf("%d", &n)){
                    for(int i=1; i<=n; i++){
                        for(int j=1; j<=n; j++){
                            scanf("%d", &a[i][j]);  
                        }
                    }
                    spfa(1);
                    int ans = dis[n];
                    int a1 = dis[1];
                    spfa(n);
                    a1 += dis[n];
                    printf("%d
    ", min(a1, ans));
                }
                return 0;   
    }
    HDU4370
  • 相关阅读:
    代码重构~方法归子
    代码重构~代码注释
    VS2010安装帮助文档
    imagecreate()与imagecreatetruecolor()区别
    php cookie 和session详解
    horner's rule霍纳法则及综合除法
    php单引号和双引号的区别与用法
    php通过session判断用户是否登录
    php 产生验证码
    基于递归的整数幂的计算
  • 原文地址:https://www.cnblogs.com/ckxkexing/p/9729057.html
Copyright © 2011-2022 走看看