zoukankan      html  css  js  c++  java
  • SPOJ

    SPOJ - VFMUL:https://vjudge.net/problem/SPOJ-VFMUL

    这是一道FFT求高精度的模板题。

    参考:https://www.cnblogs.com/RabbitHu/p/FFT.html

    #include <algorithm>
    #include  <iterator>
    #include  <iostream>
    #include   <cstring>
    #include   <cstdlib>
    #include   <iomanip>
    #include   <complex>
    #include    <bitset>
    #include    <cctype>
    #include    <cstdio>
    #include    <string>
    #include    <vector>
    #include     <stack>
    #include     <cmath>
    #include     <queue>
    #include      <list>
    #include       <map>
    #include       <set>
    #include   <cassert>
     
    using namespace std;
    //#pragma GCC optimize(3)
    //#pragma comment(linker, "/STACK:102400000,102400000")  //c++
    // #pragma GCC diagnostic error "-std=c++11"
    // #pragma comment(linker, "/stack:200000000")
    // #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    // #pragma GCC optimize("-fdelete-null-pointer-checks,inline-functions-called-once,-funsafe-loop-optimizations,-fexpensive-optimizations,-foptimize-sibling-calls,-ftree-switch-conversion,-finline-small-functions,inline-small-functions,-frerun-cse-after-loop,-fhoist-adjacent-loads,-findirect-inlining,-freorder-functions,no-stack-protector,-fpartial-inlining,-fsched-interblock,-fcse-follow-jumps,-fcse-skip-blocks,-falign-functions,-fstrict-overflow,-fstrict-aliasing,-fschedule-insns2,-ftree-tail-merge,inline-functions,-fschedule-insns,-freorder-blocks,-fwhole-program,-funroll-loops,-fthread-jumps,-fcrossjumping,-fcaller-saves,-fdevirtualize,-falign-labels,-falign-loops,-falign-jumps,unroll-loops,-fsched-spec,-ffast-math,Ofast,inline,-fgcse,-fgcse-lm,-fipa-sra,-ftree-pre,-ftree-vrp,-fpeephole2",3)
     
    #define lson (l , mid , rt << 1)
    #define rson (mid + 1 , r , rt << 1 | 1)
    #define debug(x) cerr << #x << " = " << x << "
    ";
    #define pb push_back
    #define pq priority_queue
     
     
     
    typedef long long ll;
    typedef unsigned long long ull;
     
    typedef pair<ll ,ll > pll;
    typedef pair<int ,int > pii;
    typedef pair<int,pii> p3;
    typedef complex<double> cp;
    //priority_queue<int> q;//这是一个大根堆q
    //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
    #define fi first
    #define se second
    //#define endl '
    '
     
    #define OKC ios::sync_with_stdio(false);cin.tie(0)
    #define FT(A,B,C) for(int A=B;A <= C;++A)  //用来压行
    #define REP(i , j , k)  for(int i = j ; i <  k ; ++i)
    #define max3(a,b,c) max(max(a,b), c);
    //priority_queue<int ,vector<int>, greater<int> >que;
     
    const ll mos = 0x7FFFFFFF;  //2147483647
    const ll nmos = 0x80000000;  //-2147483648
    const int inf = 0x3f3f3f3f;
    const ll inff = 0x3f3f3f3f3f3f3f3f; //18
    // const int mod = 10007;
    const double esp = 1e-8;
    const double PI=acos(-1.0);
    const double PHI=0.61803399;    //黄金分割点
    const double tPHI=0.38196601;
     
     
    template<typename T>
    inline T read(T&x){
        x=0;int f=0;char ch=getchar();
        while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar();
        while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
        return x=f?-x:x;
    }
     
     
    /*-----------------------showtime----------------------*/
                const int maxn = 2*600009;                  //注意不能和len1+len2的和刚刚好,因为n是最近的2的阶乘
                cp a[maxn], b[maxn], omg[maxn], inv[maxn];
                int n=1;
                void init(){
                    memset(omg,0,sizeof(omg));
                    memset(inv,0,sizeof(inv));
                    for(int i = 0; i < n; i++){
                        omg[i] = cp(cos(2 * PI * i / n), sin(2 * PI * i / n));
                        inv[i] = conj(omg[i]);
                    }
                }
                void fft(cp *a, cp *omg){
                    int lim = 0;
                    while((1 << lim) < n) lim++;
                    for(int i = 0; i < n; i++){
                        int t = 0;
                        for(int j = 0; j < lim; j++)
                            if((i >> j) & 1) t |= (1 << (lim - j - 1));
                        if(i < t) swap(a[i], a[t]); 
                    }
                    for(int l = 2; l <= n; l *= 2){
                    int m = l / 2;
                    for(cp *p = a; p != a + n; p += l)
                        for(int i = 0; i < m; i++){
                            cp t = omg[n / l * i] * p[i + m];
                            p[i + m] = p[i] - t;
                            p[i] += t;
                        }
                    }
                }
     
                char s1[maxn],s2[maxn];
                int res[maxn];
    int main(){
                int T;scanf("%d", &T);
                while(T--){
                    n = 1;
                    scanf("%s%s", s1, s2);
                    int len1 = strlen(s1),len2 = strlen(s2);
                    while(n < len1 + len2) n <<= 1;
                    memset(a, 0 ,sizeof(a));
                    memset(b, 0 ,sizeof(b));
                    for(int i=0; i<len1; i++){
                        a[len1 - i - 1].real( s1[i] - '0');
                    }
                    for(int i=0; i<len2; i++){
                        b[len2 - i - 1].real( s2[i] - '0');
                    }
                    init();
                    fft(a, omg);
                    fft(b, omg);
                    for(int i=0; i<n; i++){
                        a[i] *= b[i];
                    }
                    fft(a,inv);
                    memset(res,0,sizeof(res));
                    for(int i=0; i<n; i++){
                        res[i] += double(a[i].real() / n + 0.5);
                        res[i+1] += res[i] / 10;
                        res[i] = res[i] % 10;
                    }
                    int s = len1 + len2 - 1;
                    // debug(s);
                    while(res[s] == 0 && s > 0)s--;
                    for(int i = s; i>=0; i--){
                        putchar('0' + res[i]);
                    }
                    printf("
    ");
                }
                
                return 0;
    }
    FFT
  • 相关阅读:
    .NET 开源工作流: Slickflow流程引擎基础介绍(六)--模块化架构设计和实践
    .NET 开源工作流: Slickflow流程引擎基础介绍(五) -- 会签加签高级特性介绍
    vue实现Excel文件的上传与下载
    库存商品计算成本的几种方法
    如果有一天不做程序员了,还能入什么行业?
    C#使用EF连接PGSql数据库
    回顾2018,展望2019
    Git命令使用大全
    使用VSCode配置简单的vue项目
    SqlServer的两种插入方式效率对比
  • 原文地址:https://www.cnblogs.com/ckxkexing/p/9737902.html
Copyright © 2011-2022 走看看