Min-Max
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 2192 | Accepted: 502 |
Description
Define the following function
Given the value C of F(p1, p2 ... pn), can you find the minimum and maximum value of F(q1, q2 ... qn)?
Given the value C of F(p1, p2 ... pn), can you find the minimum and maximum value of F(q1, q2 ... qn)?
Input
The input contains several test cases. For each test case, it contains three lines.
Line 1: two integers n (1<= n <= 50000) and C.
Line 2: n integers p1, p2 ... pn (|pi| < 1000 for 1 <= i <= n).
Line 3: n integers q1, q2 ... qn (|qi| < 1000 for 1 <= i <= n).
Line 1: two integers n (1<= n <= 50000) and C.
Line 2: n integers p1, p2 ... pn (|pi| < 1000 for 1 <= i <= n).
Line 3: n integers q1, q2 ... qn (|qi| < 1000 for 1 <= i <= n).
Output
For each test case, output the minimum and maximum value in a single line with the fraction rounded to 3 decimal places.
Sample Input
2 1 3 1 0 2
Sample Output
2.000 2.000
Source
POJ Monthly--2005.08.28,Static
题目一看就很熟悉很熟悉很熟悉啊!
我怎么一眼看到就想起詹森不等式呢。
。。。
事实上是重心公式。C是重心的x,而y在凸包上。
所以问题就变成求凸包啦!
求完凸包就要绕着凸包上每一条边求极值并更新。
/*********************************************************** > OS : Linux 3.13.0-24-generic (Mint-17) > Author : yaolong > Mail : dengyaolong@yeah.net > Time : 2014年10月14日 星期二 07时44分53秒 **********************************************************/ #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <algorithm> #include <cmath> using namespace std; const double INF = 1e50; const int N = 61111; struct Point { int x, y; } ; Point p[N], stk[N]; Point minp; int top; double cross ( Point &o, Point &a, Point &b ) { return ( a.x - o.x ) * ( b.y - o.y ) - ( a.y - o.y ) * ( b.x - o.x ); } double dist ( Point &A, Point & B ) { return hypot ( A.x - B.x, A.y - B.y ); } bool cmp ( Point A, Point B ) { double k = cross ( minp, A, B ); if ( k < 0 ) return 0; if ( k > 0 ) return 1; return dist ( minp, A ) < dist ( minp, B ); } void Gramham ( int n ) { int i; for ( i = 1; i < n; i++ ) { if ( p[i].y < p[0].y || ( p[i].y == p[0].y && p[i].x < p[0].x ) ) { swap ( p[i], p[0] ); } } minp = p[0]; p[n] = p[0]; sort ( p + 1, p + n, cmp ); stk[0] = p[0]; stk[1] = p[1]; top = 1; for ( i = 2; i < n; i++ ) { while ( top >= 1 && cross ( stk[top - 1], stk[top ], p[i] ) <= 0 ) --top; stk[++top] = p[i]; } } double mmin, mmax; int c; void update ( Point a, Point b ) { if ( a.x > b.x ) { swap ( a, b ); } if ( a.x <= c && b.x >= c ) { if ( a.x == c && b.x == c ) { mmax = max ( mmax, ( double ) max ( a.y, b.y ) ); mmin = min ( mmin, ( double ) min ( a.y, b.y ) ); } else { double k = ( ( double ) c - a.x ) / ( ( double ) b.x - a.x ) * ( b.y - a.y ) + a.y; mmax = max ( mmax, k ); mmin = min ( mmin, k ); } } } int main() { int n, i; while ( ~scanf ( "%d%d", &n, &c ) ) { for ( i = 0; i < n; i++ ) { scanf ( "%d", &p[i].x ); } for ( i = 0; i < n; i++ ) { scanf ( "%d", &p[i].y ); } if ( n == 1 ) { printf ( "%.3f %.3f ", ( double ) p[0].y, ( double ) p[0].y ); continue; } Gramham ( n ); stk[++top] = stk[0]; mmin = INF, mmax = -INF; for ( i = 1; i <= top; i++ ) { update ( stk[i - 1], stk[i] ); } printf ( "%.3f %.3f ", mmin, mmax ); } return 0; }