zoukankan      html  css  js  c++  java
  • poj2595(凸包)

    Min-Max
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 2192   Accepted: 502

    Description

    Define the following function

    Given the value C of F(p1, p2 ... pn), can you find the minimum and maximum value of F(q1, q2 ... qn)?

    Input

    The input contains several test cases. For each test case, it contains three lines.

    Line 1: two integers n (1<= n <= 50000) and C.
    Line 2: n integers p1, p2 ... pn (|pi| < 1000 for 1 <= i <= n).
    Line 3: n integers q1, q2 ... qn (|qi| < 1000 for 1 <= i <= n).

    Output

    For each test case, output the minimum and maximum value in a single line with the fraction rounded to 3 decimal places.

    Sample Input

    2 1
    3 1
    0 2
    

    Sample Output

    2.000 2.000

    Source


    题目一看就很熟悉很熟悉很熟悉啊!

    我怎么一眼看到就想起詹森不等式呢。

    。。。

    事实上是重心公式。C是重心的x,而y在凸包上。

    所以问题就变成求凸包啦!

    求完凸包就要绕着凸包上每一条边求极值并更新。


    /***********************************************************
    	> OS     : Linux 3.13.0-24-generic (Mint-17)
    	> Author : yaolong
    	> Mail   : dengyaolong@yeah.net
    	> Time   : 2014年10月14日 星期二 07时44分53秒
     **********************************************************/
    #include <iostream>
    #include <cstdio>
    #include <string>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    const double INF = 1e50;
    const int N = 61111;
    struct Point
    {
        int x, y;
    } ;
    Point p[N], stk[N];
    Point minp;
    int top;
    double cross ( Point &o,  Point &a,  Point &b )
    {
        return ( a.x - o.x ) * ( b.y - o.y ) - ( a.y - o.y ) * ( b.x - o.x );
    }
    double dist ( Point &A,  Point & B )
    {
        return hypot ( A.x - B.x, A.y - B.y );
    }
    bool cmp ( Point A, Point B )
    {
        double k = cross ( minp, A, B );
        if ( k < 0 ) return 0;
        if ( k > 0 ) return 1;
        return dist ( minp, A ) < dist ( minp, B );
    }
    void Gramham ( int n )
    {
        int i;
        for ( i = 1; i < n; i++ )
        {
            if ( p[i].y < p[0].y || ( p[i].y == p[0].y && p[i].x < p[0].x ) )
            {
                swap ( p[i], p[0] );
            }
        }
        minp = p[0];
        p[n] = p[0];
        sort ( p + 1, p + n, cmp );
        stk[0] = p[0];
        stk[1] = p[1];
        top = 1;
        for ( i = 2; i < n; i++ )
        {
            while ( top >= 1 && cross ( stk[top - 1], stk[top ], p[i] ) <= 0 ) --top;
            stk[++top] = p[i];
        }
    }
    double mmin, mmax;
    int c;
    void update ( Point a, Point b )
    {
        if ( a.x > b.x )
        {
            swap ( a, b );
        }
        if ( a.x <= c && b.x >= c )
        {
            if ( a.x == c && b.x == c )
            {
                mmax = max ( mmax, ( double ) max ( a.y, b.y ) );
                mmin = min ( mmin, ( double ) min ( a.y, b.y ) );
            }
            else
            {
                double k = ( ( double ) c - a.x ) / ( ( double ) b.x - a.x ) * ( b.y - a.y ) + a.y;
                mmax = max ( mmax, k );
                mmin = min ( mmin, k );
            }
        }
    }
    int main()
    {
        int n,  i;
        while ( ~scanf ( "%d%d", &n, &c ) )
        {
            for ( i = 0; i < n; i++ )
            {
                scanf ( "%d", &p[i].x );
            }
            for ( i = 0; i < n; i++ )
            {
                scanf ( "%d", &p[i].y );
            }
            if ( n == 1 )
            {
                printf ( "%.3f %.3f
    ", ( double ) p[0].y, ( double ) p[0].y );
                continue;
            }
            Gramham ( n );
            stk[++top] = stk[0];
            mmin = INF, mmax = -INF;
            for ( i = 1; i <= top; i++ )
            {
                update ( stk[i - 1], stk[i] );
            }
            printf ( "%.3f %.3f
    ", mmin, mmax );
        }
        return 0;
    }
    


  • 相关阅读:
    09、AppBarControl
    15、ScrollViewerSample
    11、DataBinding
    18、Compression
    关于创建oracle dblink 过程的几点心得吧
    教你如何玩转DK血
    DK需要知道的事
    Displaying Dynamic KML with ASP.NET
    WLK:裁缝/附魔350450速冲攻略
    WLK狂暴,防御战士的一点心得.
  • 原文地址:https://www.cnblogs.com/claireyuancy/p/6814522.html
Copyright © 2011-2022 走看看