zoukankan      html  css  js  c++  java
  • Silver Cow Party

    Description

    One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ XN). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

    Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

    Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

    Input

    Line 1: Three space-separated integers, respectively: N, M, and X
    Lines 2.. M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

    Output

    Line 1: One integer: the maximum of time any one cow must walk.

    Sample Input

    4 8 2
    1 2 4
    1 3 2
    1 4 7
    2 1 1
    2 3 5
    3 1 2
    3 4 4
    4 2 3

    Sample Output

    10

    Hint

    Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.


    题解:还是正向建图和逆向建图。就是求往返路程中最大的一条。


    djistra:

    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <queue>
    
    using namespace std;
    
    const int INF= 0x3fffffff;
    
    int map[2][1003][1003];
    bool visited[1003];
    int d[1003];
    int ans[1003];
    
    int max(int a,int b)
    {
    	return a > b ? a : b;
    }
    
    void prim(int n,int s,int flag)
    {
    	memset(visited,false,sizeof(visited));
    	for(int i = 1;i <= n;i++)
    	{
    		d[i] = map[flag][s][i];
    		//cout<<d[i]<<endl;
    	}
    	visited[s] = true;
    	for(int i = 1;i < n;i++)
    	{
    		int min = INF;
    		int k;
    		for(int j = 1;j <= n;j++)
    		{
    			if(!visited[j] && min > d[j])
    			{
    				min = d[j];
    				k = j;
    			}
    		}
    		if(min == INF)
    		{
    			break;
    		}
    		visited[k] = true;
    		for(int j = 1;j <= n;j++)
    		{
    			if(!visited[j] && d[j] > d[k] + map[flag][k][j])
    			{
    				d[j] = d[k] + map[flag][k][j];
    			}
    		}
    	}
    }
    
    int main()
    {
    	int n,m,st;
    	while(scanf("%d%d%d",&n,&m,&st) != EOF)
    	{
    		for(int i = 1;i <= n;i++)
    		{
    			for(int j = 1;j <= n;j++)
    			{
    				if(i == j)
    				{
    					map[0][i][j] = 0;
    					map[1][i][j] = 0;
    				}
    				else
    				{
    					map[0][i][j] = INF;
    					map[1][i][j] = INF;
    				}
    			}
    		}
    		
    		int u,v,c;
    		for(int i = 0;i < m;i++)
    		{
    			scanf("%d%d%d",&u,&v,&c);
    			map[0][u][v] = c;
    			map[1][v][u] = c;
    		}
    		
    		prim(n,st,1);
    		for(int i = 1;i <= n;i++)
    		{
    			ans[i] = d[i];
    		}
    		prim(n,st,0);
    		int res = 0;
    		for(int i = 1;i <= n;i++)
    		{
    			ans[i] += d[i];
    			res = max(res,ans[i]);
    		}
    		
    		printf("%d
    ",res);
    	}
    	
    	
    	return 0;
    }


  • 相关阅读:
    结对编程项目作业2-结对编项目设计文档
    20170914-构建之法:现代软件工程-阅读笔记
    课后作业-阅读任务-阅读提问-1
    GIT 的使用方法
    团队-井字棋-需求分析
    结对-贪吃蛇-需求分析
    python_基础_0
    Unix_07_文件系统高级操作_2
    Unix_06_文件系统高级操作_1
    Unix_05_文件系统高级操作_0
  • 原文地址:https://www.cnblogs.com/claireyuancy/p/7273295.html
Copyright © 2011-2022 走看看