zoukankan      html  css  js  c++  java
  • 蓝桥杯 传球游戏 动态规划

    题目描述
    上体育课的时候,小蛮的老师经常带着同学们一起做游戏。这次,老师带着同学们一起做传球游戏。
    游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师再次吹哨子时,传球停止,此时,拿着球没传出去的那个同学就是败者,要给大家表演一个节目。
    聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了m次以后,又回到小蛮手里。两种传球的方法被视作不同的方 法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有3个同学1号、2号、3号,并假设小蛮为1号,球传了3次回到小蛮手里的方 式有1-> 2-> 3-> 1和1-> 3-> 2-> 1,共2种。

    数据规模和约定
    100%的数据满足:3< =n< =30,1< =m< =30

    输入
    共一行,有两个用空格隔开的整数n,m(3< =n< =30,1< =m< =30)。
    输出
    t共一行,有一个整数,表示符合题意的方法数。
    样例输入
    3 3
    样例输出
    2

    思路:动态规划f[i][j]表示的集合是第i次到j的方案,记录的是数量,状态转移显然是f[i][j]=f[i-1][at(j-1)]+f[i-1][at(j+1)]

    #include<iostream>
    using namespace std;
    const int N = 35;
    int f[N][N];
    int n,m;
    int at(int x)
    {
        if(x==n+1){
            return 1;
        }
        if(x==0){
            return n;
        }
        return x;
    }
    int main()
    {
        cin>>n>>m;
        //base case
        f[1][2]=1;
        f[1][n]=1;
        //dp
        for(int i=2;i<=m;++i){
            for(int j=1;j<=n;++j){
                f[i][j]=f[i-1][at(j-1)]+f[i-1][at(j+1)];
            }
        }
        //output
        cout<<f[m][1]<<endl;
        return 0;
    }
    
  • 相关阅读:
    http状态码
    闭包
    节流和防抖
    继承方式
    array和object对比
    排序算法
    算法题
    汇编 asm 笔记
    FFMPEG 内部 YUV444P016 -> P010
    FFMPEG 内部 YUV444p16LE-> P016LE
  • 原文地址:https://www.cnblogs.com/clear-love/p/11335870.html
Copyright © 2011-2022 走看看