zoukankan      html  css  js  c++  java
  • [3] TensorFlow 深层神经网络

    深层神经网络
    简称为深度学习有两个非常重要的特性
    1. 多层
    2. 非线性

    线性模型的局限性 :例如前面的神经网络有两层(不算输入层),但是它和单层的神经网络井没有区别,任意线性模型的组合仍然还是线性模型,然而线性模型能够解决的问题是有限的

    下面用TensorFlow Playground来演示 线性模型的局限性

    还是以判断零件是否合格为例,输入为 X1 和巧,其中 X1 代表一个零件质量和平均质量 的差, X2代表一个零件长度和平均长度的差。 假设一个零件的质量及长度离平均质量及长度越近,那么这个零件越有可能合格

    蓝色的点代表合格的零件,而黄色的点代表不合格的零件。可以看到虽然蓝色和黄色的点有一些重合,但是大部分代表合格零件的蓝色点都在原点(0,0)的附近,而代表不合格零件的黄色点都在离原点相对远的地方。 这样的分布比较接近真实问题,因为大部分真实的问题都存在大致的趋势,但是很难甚至无法完全正确地区分不同的类别,下面我们用线性模型尝试着去解决这个问题

    顶部 (Activation) 选择线性(Linear)

    这和前面设定的神经网络结构是基本一致的,通过模型训练100+轮候,在最右边可以看到训练结果

     从左到右有隐约有数条分界线,说明这个模型只能用直线来划分平面,对于这种环形的分布是不适用的 (属于线性不可分问题)

    而把数据切换成Gaussian高斯分布

    在线性可分问题中,线性模型就能很好区分不同颜色的点。而在更复杂的问题中,往往是无法通过直线(或者高维空间的平面)划分的, 现实世界中,绝大部分的问题都是无法线性分割的。

    回到判断零件是否合格的问题, 如果将激活函数换成非线性的,比如ReLU激活函数,神经网络模型就可以很好的区分不同颜色的点(零件)了

    激活函数实现去线性化
    如果将每一个神经元\

  • 相关阅读:
    Path Sum II
    Convert Sorted Array to Binary Search Tree
    Construct Binary Tree from Inorder and Postorder Traversal
    Construct Binary Tree from Preorder and Inorder Traversal
    Maximum Depth of Binary Tree
    Binary Tree Zigzag Level Order Traversal
    Binary Tree Level Order Traversal
    Same Tree
    Validate Binary Search Tree
    Binary Tree Inorder Traversal
  • 原文地址:https://www.cnblogs.com/clemente/p/10263607.html
Copyright © 2011-2022 走看看