zoukankan      html  css  js  c++  java
  • POJ 1837 Balance (DP)

    Balance

    Time Limit: 1000MS   Memory Limit: 30000K
    Total Submissions: 10655   Accepted: 6609

    Description

    Gigel has a strange "balance" and he wants to poise it. Actually, the device is different from any other ordinary balance. 
    It orders two arms of negligible weight and each arm's length is 15. Some hooks are attached to these arms and Gigel wants to hang up some weights from his collection of G weights (1 <= G <= 20) knowing that these weights have distinct values in the range 1..25. Gigel may droop any weight of any hook but he is forced to use all the weights. 
    Finally, Gigel managed to balance the device using the experience he gained at the National Olympiad in Informatics. Now he would like to know in how many ways the device can be balanced. 

    Knowing the repartition of the hooks and the set of the weights write a program that calculates the number of possibilities to balance the device. 
    It is guaranteed that will exist at least one solution for each test case at the evaluation. 

    Input

    The input has the following structure: 
    • the first line contains the number C (2 <= C <= 20) and the number G (2 <= G <= 20); 
    • the next line contains C integer numbers (these numbers are also distinct and sorted in ascending order) in the range -15..15 representing the repartition of the hooks; each number represents the position relative to the center of the balance on the X axis (when no weights are attached the device is balanced and lined up to the X axis; the absolute value of the distances represents the distance between the hook and the balance center and the sign of the numbers determines the arm of the balance to which the hook is attached: '-' for the left arm and '+' for the right arm); 
    • on the next line there are G natural, distinct and sorted in ascending order numbers in the range 1..25 representing the weights' values. 

    Output

    The output contains the number M representing the number of possibilities to poise the balance.

    Sample Input

    2 4	
    -2 3 
    3 4 5 8
    

    Sample Output

    2

    Source

     
    题目的意思就是说将砝码挂在杠杆上,使得杠杆平衡,问你有多少重挂法?
     
    dp[i][j]代表放第i个砝码的时候有j个重量,因为是要得到平衡时为0的重量,在计算时,重量可能小于0,所以我们估计出最大的重量是20*15*25=7500
    所以将7500看成0,当j<0即为小于0时的状态
     
    这样就可以得到状态方程
    dp[i][j+w[k]*v[k]]+=dp[i-1][j]
     1 #include<cstdio>
     2 #include<iostream>
     3 #include<cstring>
     4 #include<stdlib.h>
     5 #include<algorithm>
     6 using namespace std;
     7 const int MAXN=20+5;
     8 int w[MAXN],v[MAXN];
     9 int dp[MAXN][15005];
    10 int main()
    11 {
    12     int n,m;
    13     while(scanf("%d %d",&n,&m)!=EOF)
    14     {
    15         for(int i=1;i<=n;i++)
    16             scanf("%d",&w[i]);
    17         for(int i=1;i<=m;i++)
    18             scanf("%d",&v[i]);
    19             
    20         memset(dp,0,sizeof(dp));
    21         dp[0][7500]=1;
    22         for(int i=1;i<=m;i++)
    23         {
    24             for(int j=0;j<=15000;j++)
    25             {
    26                 if(dp[i-1][j])//如果为0,则代表之前没有得到这个状态,不用再计算了
    27                 {
    28                     for(int k=1;k<=n;k++)
    29                     dp[i][j+w[k]*v[i]]+=dp[i-1][j];
    30                 }
    31             }
    32         }
    33         printf("%d
    ",dp[m][7500]);
    34     }
    35     return 0;
    36 }
    View Code
  • 相关阅读:
    不停机还能替换代码?6年的 Java程序员表示不可思议
    redis 分布式锁的 5个坑,真是又大又深
    一口气说出 4种 LBS “附近的人” 实现方式,面试官笑了
    真没想到,Springboot能这样做全局日期格式化,有点香!
    springboot + aop + Lua分布式限流的最佳实践
    不可思议的hexo,五分钟教你免费搭一个高逼格技术博客
    Redis开发运维的陷阱及避坑指南
    Jar包一键重启的Shell脚本及新服务器部署的一些经验
    与Redis的初次相识,Redis安装、启动与配置
    SpringBoot项目中应用Jedis和一些常见配置
  • 原文地址:https://www.cnblogs.com/clliff/p/3954681.html
Copyright © 2011-2022 走看看