zoukankan      html  css  js  c++  java
  • 2015 Multi-University Training Contest 2 1006(DFS)

    Friends

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 0    Accepted Submission(s): 0


    Problem Description
    There are n people and m pairs of friends. For every pair of friends, they can choose to become online friends (communicating using online applications) or offline friends (mostly using face-to-face communication). However, everyone in these n people wants to have the same number of online and offline friends (i.e. If one person has x onine friends, he or she must have x offline friends too, but different people can have different number of online or offline friends). Please determine how many ways there are to satisfy their requirements.
     
    Input
    The first line of the input is a single integer T (T=100), indicating the number of testcases.

    For each testcase, the first line contains two integers n (1n8) and m (0mn(n1)2), indicating the number of people and the number of pairs of friends, respectively. Each of the next m lines contains two numbers x and y, which mean x and y are friends. It is guaranteed that xy and every friend relationship will appear at most once.
     
    Output
    For each testcase, print one number indicating the answer.
     
    Sample Input
    2
    3 3
    1 2
    2 3
    3 1
    4 4
    1 2
    2 3
    3 4
    4 1
     
    Sample Output
    0
    2
     

    题意:有N个人有M个关系,每两个人的关系有线上关系和线下关系两种,要使每个人与其他人的线上好友和线下好友数量相等,求有多少种安排方法?

    分析:考虑到人数很少,所以可以考虑暴力枚举每一条边,但总边数也有(8 * 7) / 2 = 28条边,最后要求线上好友和线下好友人数相等,所以每个人的好友不能为奇数,再去枚举每一条边。

    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<cmath>
    #include<stack>
    #include<queue>
    #include<stdlib.h>
    #include<algorithm>
    #define LL __int64
    using namespace std;
    const int MAXN=10+5;
    int kase,n,m,ans;
    int e[50][2],l[MAXN],r[MAXN],tot[MAXN];
    
    void DFS(int cur)
    {
        if(cur==m)
        {
            for(int i=1;i<=n;i++)
            {
                if(l[i]!=r[i])
                    return ;
            }
            ans++;
            return ;
        }
        int tmpl=e[cur][0],tmpr=e[cur][1];
        if(l[tmpl]+1 <= tot[tmpl]/2 && l[tmpr]+1 <= tot[tmpr]/2)//线上好友
        {
            l[tmpl]++;
            l[tmpr]++;
            DFS(cur+1);
            l[tmpl]--;
            l[tmpr]--;
        }
        if(r[tmpl]+1 <= tot[tmpl]/2 && r[tmpr]+1 <= tot[tmpr]/2)//线下好友
        {
            r[tmpl]++;
            r[tmpr]++;
            DFS(cur+1);
            r[tmpl]--;
            r[tmpr]--;
        }
    
    }
    int main()
    {
        scanf("%d",&kase);
        while(kase--)
        {
            int i;
            memset(tot,0,sizeof(tot));
            memset(e,0,sizeof(e));
            memset(l,0,sizeof(l));
            memset(r,0,sizeof(r));
    
            scanf("%d %d",&n,&m);
            for(i=0;i<m;i++)
            {
                scanf("%d %d",&e[i][0],&e[i][1]);//一条边上的两个点
                tot[e[i][0]]++;
                tot[e[i][1]]++;//点的度
            }
            for(i=1;i<=n;i++)
                if(tot[i]%2)
                    break;
            if(i<=n) {printf("0
    "); continue;}
            ans=0;
            DFS(0);
            printf("%d
    ",ans);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    包括”/“排除”设置禁用了加载功能。
    如何打造高质量的机器学习数据集?
    机器学习项目流程(一)初探数据集
    java 转义与反转义
    jfinal 获取刚保存的对象的主键 ,该主键在数据库中自增
    凤凰架构:构建可靠的大型分布式系统 ISBN:9787111683919 -推荐
    STC89C52控制74HC595,74HC138双色16x16点阵屏循环显示汉字
    STC89C52驱动MAX7219LED点阵级联, 文字滚动效果
    STM32F407VET6烧录出现flash download failed target dll has been cancelled
    DS1302与STC12的连接电路和驱动实现
  • 原文地址:https://www.cnblogs.com/clliff/p/4671599.html
Copyright © 2011-2022 走看看