The mook jong
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 217 Accepted Submission(s): 160
Problem Description
![](../../data/images/C613-1001-1.jpg)
ZJiaQ want to become a strong man, so he decided to play the mook jong。ZJiaQ want to put some mook jongs in his backyard. His backyard consist of n bricks that is 1*1,so it is 1*n。ZJiaQ want to put a mook jong in a brick. because of the hands of the mook jong, the distance of two mook jongs should be equal or more than 2 bricks. Now ZJiaQ want to know how many ways can ZJiaQ put mook jongs legally(at least one mook jong).
ZJiaQ want to become a strong man, so he decided to play the mook jong。ZJiaQ want to put some mook jongs in his backyard. His backyard consist of n bricks that is 1*1,so it is 1*n。ZJiaQ want to put a mook jong in a brick. because of the hands of the mook jong, the distance of two mook jongs should be equal or more than 2 bricks. Now ZJiaQ want to know how many ways can ZJiaQ put mook jongs legally(at least one mook jong).
Input
There ar multiply cases. For each case, there is a single integer n( 1 < = n < = 60)
Output
Print the ways in a single line for each case.
Sample Input
1
2
3
4
5
6
Sample Output
1
2
3
5
8
12
Source
题意:ZJiaQ为了强身健体,决定通过木人桩练习武术。ZJiaQ希望把木人桩摆在自家的那个由1*1的地砖铺成的1*n的院子里。由于ZJiaQ是个强迫症,所以他要把一个木人桩正好摆在一个地砖上,由于木人桩手比较长,所以两个木人桩之间地砖必须大于等于两个,现在ZJiaQ想知道在至少摆放一个木人桩的情况下,有多少种摆法。
分析:
1、这道题暴力打表其实可以找出规律
2、用dp来做就是设dp[i][0]表示在第i个格子里面不放木桩,dp[i][1]表示在第i个格子里面放木桩。
如果当前格子放木桩的话:那么dp[i][1]=dp[i-3][0]+dp[i-3][1]
如果当前格子不放木桩的话,那么dp[i][0]=dp[i-1][0]+dp[i-1][1]
#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #include<string> #include<iostream> #include<cstring> #include<cmath> #include<stack> #include<queue> #include<vector> #include<map> #include<stdlib.h> #include<algorithm> #define LL __int64 using namespace std; const int MAXN=60+5; LL dp[MAXN][2],n; void init() { dp[1][0]=0;dp[1][1]=1; dp[2][0]=1;dp[2][1]=1; dp[3][0]=2;dp[3][1]=1; for(int i=4;i<=65;i++) { dp[i][0]=dp[i-1][0]+dp[i-1][1]; dp[i][1]=dp[i-3][0]+dp[i-3][1]+1; } } int main() { init(); //freopen("in.txt","r",stdin); while(scanf("%d",&n)!=EOF) { printf("%I64d ",dp[n][0]+dp[n][1]); } return 0; }