zoukankan      html  css  js  c++  java
  • CodeForces 344C Rational Resistance

    C. Rational Resistance 
    time limit per test 
    1 second
    memory limit per test 
    256 megabytes
    input 
    standard input
    output 
    standard output

    Mad scientist Mike is building a time machine in his spare time. To finish the work, he needs a resistor with a certain resistance value.

    However, all Mike has is lots of identical resistors with unit resistance R0 = 1. Elements with other resistance can be constructed from these resistors. In this problem, we will consider the following as elements:

    1. one resistor;
    2. an element and one resistor plugged in sequence;
    3. an element and one resistor plugged in parallel.

    With the consecutive connection the resistance of the new element equals R = Re + R0. With the parallel connection the resistance of the new element equals . In this case Re equals the resistance of the element being connected.

    Mike needs to assemble an element with a resistance equal to the fraction . Determine the smallest possible number of resistors he needs to make such an element.

    Input

    The single input line contains two space-separated integers a and b (1 ≤ a, b ≤ 10^18). It is guaranteed that the fraction  is irreducible. It is guaranteed that a solution always exists.

    Output

    Print a single number — the answer to the problem.

    Please do not use the %lld specifier to read or write 64-bit integers in С++. It is recommended to use the cin, cout streams or the%I64d specifier.

    Sample test(s)
    input
    1 1
    output
    1
    input
    3 2
    output
    3
    input
    199 200
    output
    200
    Note

    In the first sample, one resistor is enough.

    In the second sample one can connect the resistors in parallel, take the resulting element and connect it to a third resistor consecutively. Then, we get an element with resistance . We cannot make this element using two resistors.

    题意:给出a,b,问最少用多少阻值为1的电阻通过串并联的方式得到阻值为a/b的电阻,a/b是最简形式

    分析:如果a==b,既然是最简,那么就只有等于1的情况

       如果a>b,那么化成假分数,整数部分用阻值为1的电阻串联即可,剩下就得到a'<b

       如果a<b,有个结论,引用一下:如果最少用K个电阻构成a/b Ω电阻,那么b/a也需K个(只需改变所有的串并联关系即可)

    那么分好情况就好做了,注意结果可能会超int

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<cstdio>
    #include<string>
    #include<iostream>
    #include<cstring>
    #include<cmath>
    #include<stack>
    #include<queue>
    #include<vector>
    #include<map>
    #include<stdlib.h>
    #include<algorithm>
    #define LL __int64
    using namespace std;
    int main()
    {
        LL a,b,ans=0;
        scanf("%I64d %I64d",&a,&b);
        if(a==b) printf("1
    ");
        else
        {
            while(a!=b)
            {
                if(a==0) break;
                if(a<b) swap(a,b);
                ans+=a/b;
                a%=b;
            }
            printf("%I64d
    ",ans);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    6个实例详解如何把if-else代码重构成高质量代码
    Fiddler抓包工具总结
    thinkphp5 图片上传七牛云
    mysql事件(定时任务)处理超时失效订单
    修改PhpStorm创建Php类文件时头部作者
    sed理论讲解、实战
    sed实战、find实战、grep实战
    通配符、正则表达式、python去重
    python3:requests模块-写了一点
    《流畅的Python》一副扑克牌中的难点
  • 原文地址:https://www.cnblogs.com/clliff/p/4720422.html
Copyright © 2011-2022 走看看