zoukankan      html  css  js  c++  java
  • 卡特兰数

    题目链接:http://zju.acmclub.com/index.php?app=problem_title&id=1&problem_id=1094

    卡特兰数能够应用于两个典型问题:

    1.出栈合法性:一个栈(无穷大)的进栈序列为1,2,3,...,n。问有多少个不同的出栈序列?

    (分析)假定,最后出栈的元素为k。显然,k取不同值时的情况是相互独立的,也就是求出每种k最后出栈的情况数后可用加法原则。

    因为k最后出栈,因此。在k入栈之前。比k小的值均出栈。此处情况有f(k-1)种。

    而之后比k大的值入栈。且都在k之前出栈。因此有f(n-k)种方式。

    因为比k小和比k大的值入栈出栈情况是相互独立的。此处可用乘法原则,f(n-k)*f(k-1)种,求和便是Catalan递归式。

    2.凸多边形三角划分:输入凸多边形的边数n。求不同划分的方案数f(n)

    (分析)求f(n)的问题等价于——用k把凸多边形分成两部分,这时对于固定的k。

    方案数w(k)=凸k多边形的划分方案数乘以凸n-k+1多边形的划分方案数

    k能够从2到n-1连续变化,即f(n)=w(2)+w(3)+...+w(n-1)

    最后求和即得到卡特兰数的递推式。

    当然,假设求凸多边形最优三角划分时,思路也是从k处断开。然后动态规划求解。

    n不大时,可考虑算好前nCartalan数直接返回。

    cpp代码:

    #include<iostream>
    using namespace std;
    int main(){
            string Cartalan[]={"1","1","2","5","14",
                    "42","132","429","1430","4862",
                    "16796","58786","208012","742900","2674440",
                    "9694845","35357670","129644790","477638700","1767263190",
                    "6564120420","24466267020"};
            int n;
            while(cin>>n){
               cout<<Cartalan[n]<<endl;
            }
            return 0;
    }
    


  • 相关阅读:
    Axure chrome 安装及已损坏的解决方法
    Ubuntu16.04上使用git
    ubuntu初探
    nginx入门笔记
    更改element-UI按钮默认样式
    js深拷贝与浅拷贝的区别及实现
    安装mysql-python的遇到的问题
    facebook atc弱网环境搭建和踩坑总结
    验证码识别 Tesseract的简单使用和总结
    selenium 基础(一)
  • 原文地址:https://www.cnblogs.com/clnchanpin/p/6735261.html
Copyright © 2011-2022 走看看