zoukankan      html  css  js  c++  java
  • POJ 1466 Girls and Boys (匈牙利算法 最大独立集)


    Girls and Boys
    Time Limit: 5000MS   Memory Limit: 10000K
    Total Submissions: 10912   Accepted: 4887

    Description

    In the second year of the university somebody started a study on the romantic relations between the students. The relation "romantically involved" is defined between one girl and one boy. For the study reasons it is necessary to find out the maximum set satisfying the condition: there are no two students in the set who have been "romantically involved". The result of the program is the number of students in such a set.

    Input

    The input contains several data sets in text format. Each data set represents one set of subjects of the study, with the following description:

    the number of students
    the description of each student, in the following format
    student_identifier:(number_of_romantic_relations) student_identifier1 student_identifier2 student_identifier3 ...
    or
    student_identifier:(0)

    The student_identifier is an integer number between 0 and n-1 (n <=500 ), for n subjects.

    Output

    For each given data set, the program should write to standard output a line containing the result.

    Sample Input

    7
    0: (3) 4 5 6
    1: (2) 4 6
    2: (0)
    3: (0)
    4: (2) 0 1
    5: (1) 0
    6: (2) 0 1
    3
    0: (2) 1 2
    1: (1) 0
    2: (1) 0

    Sample Output

    5
    2

    Source

    Southeastern Europe 2000

    题目链接:http://poj.org/problem?id=1466

    题目大意:一些男的和一些女的有的之间有关系,同性之间无关系,求一个最大的集合。使得里面随意两人没有关系

    题目分析:裸的最大独立集问题,建立二分图,然后依据最大独立集=点数-最大匹配,求解就可以,注意因为二分图是双向建立的。求出的最大匹配要除2

    #include <cstdio>
    #include <cstring>
    int const MAX = 505;
    bool g[MAX][MAX];
    bool vis[MAX];
    int cx[MAX], cy[MAX];
    int n;
    
    int DFS(int x)
    {
        for(int y = 0; y < n; y++)
        {
            if(!vis[y] && g[x][y])
            {
                vis[y] = true;
                if(cy[y] == -1 || DFS(cy[y]))
                {
                    cy[y] = x;
                    cx[x] = y;
                    return 1;
                }
            }
        }
        return 0;
    }
    
    int MaxMatch()
    {
        memset(cx, -1, sizeof(cx));
        memset(cy, -1, sizeof(cy));
        int res = 0;
        for(int i = 0; i < n; i++)
        {
            if(cx[i] == -1)
            {
                memset(vis, false, sizeof(vis));
                res += DFS(i);
            }
        }
        return res;
    }
    
    int main()
    {
        while(scanf("%d", &n) != EOF)
        {
            memset(g, false, sizeof(g));
            for(int i = 0; i < n; i++)
            {
                int x;
                scanf("%d", &x);
                int num;
                scanf(": (%d)", &num);
                for(int j = 0; j < num; j++)
                {
                    int y;
                    scanf("%d", &y);
                    g[x][y] = true;
                }
            }
            int ans = MaxMatch();
            printf("%d
    ", n - ans / 2);
        }
    }



  • 相关阅读:
    Atitit 常用比较复杂的图像滤镜 attilax大总结
    Atitit usrQBM1603短信验证码规范
    Atitit usrQBM2331 参数格式化规范
    Atitit 函数式编程与命令式编程的区别attilax总结  qbf
    atitit 短信接口规范与短信解决方案.docx
    atitit  验证码理论与概览与 验证码规范 解决方案.docx
    Atiti  attilax主要成果与解决方案与案例rsm版 v4
    Atitit 作用域的理解attilax总结
    Atitit cms
    Atitit 图片 验证码生成attilax总结
  • 原文地址:https://www.cnblogs.com/clnchanpin/p/7002552.html
Copyright © 2011-2022 走看看