zoukankan      html  css  js  c++  java
  • 多目标优化拥挤距离计算

    多目标优化拥挤距离计算

    觉得有用的话,欢迎一起讨论相互学习~

    我的微博我的github我的B站

    • 拥挤距离主要是维持种群中个体的多样性。具体而言,一般来说是指种群按照支配关系进行非支配排序后,单个Rank层中个体的密集程度。常用于支配关系的多目标算法中,例如NSGA-II.

    • 主要步骤如下:

      1. 取单个前沿中个体按照一个目标上的值从小到大排序
      2. 将最大目标值作为max,最小目标值保留作为min。并且这两个极值点的拥挤距离都被设置为inf即无穷大。 因此注意,一个层中可能有多个具有inf的点,即如果层中有多个点在至少一个目标上相等,并且最大或最小,那么这些点的拥挤距离都是无穷大!!因为目标上呈现垂直的关系也是属于非支配的关系!!如果出现这种情况,说明你算法的多样性很烂!~或者在某些算法早期可能出现这种情况
      3. 在这个目标上计算每个个体最相邻个体之间的距离,即i-1和i+1的目标值的差。并使用max和min对次值进行归一化。
      4. 遍历目标,将目标上已经归一化的拥挤距离相加。
      5. 进入下一层front前沿
      6. 拥挤距离越大越好,最后按照拥挤距离重新排序各层,进而排序种群

    matlab

    function CrowdDis = CrowdingDistance(PopObj)
    % Calculate the crowding distance of each solution in the same front
    
        [N,M]    = size(PopObj);
    
        CrowdDis = zeros(1,N);
        Fmax     = max(PopObj,[],1);
        Fmin     = min(PopObj,[],1);
        for i = 1 : M
            [~,rank] = sortrows(PopObj(:,i));
            CrowdDis(rank(1))   = inf;
            CrowdDis(rank(end)) = inf;
            for j = 2 : N-1
                CrowdDis(rank(j)) = CrowdDis(rank(j))+(PopObj(rank(j+1),i)-PopObj(rank(j-1),i))/(Fmax(i)-Fmin(i));
            end
        end
    end
    

    jmetal

    public void crowdingDistanceAssignment(SolutionSet solutionSet, int nObjs) {
            int size = solutionSet.size();
    
            if (size == 0)
                return;
    
            if (size == 1) {
                solutionSet.get(0).setCrowdingDistance(Double.POSITIVE_INFINITY);
                return;
            } // if
    
            if (size == 2) {
                solutionSet.get(0).setCrowdingDistance(Double.POSITIVE_INFINITY);
                solutionSet.get(1).setCrowdingDistance(Double.POSITIVE_INFINITY);
                return;
            } // if
    
            // Use a new SolutionSet to evite alter original solutionSet
            SolutionSet front = new SolutionSet(size);
            for (int i = 0; i < size; i++) {
                front.add(solutionSet.get(i));
            }
    
            for (int i = 0; i < size; i++)
                front.get(i).setCrowdingDistance(0.0);
    
            double objetiveMaxn;
            double objetiveMinn;
            double distance;
    
            for (int i = 0; i < nObjs; i++) {
                // Sort the population by Obj n
                front.sort(new ObjectiveComparator(i));
                objetiveMinn = front.get(0).getObjective(i);
                objetiveMaxn = front.get(front.size() - 1).getObjective(i);
    
                // Set de crowding distance
                front.get(0).setCrowdingDistance(Double.POSITIVE_INFINITY);
                front.get(size - 1).setCrowdingDistance(Double.POSITIVE_INFINITY);
    
                for (int j = 1; j < size - 1; j++) {
                    distance = front.get(j + 1).getObjective(i) - front.get(j - 1).getObjective(i);
                    distance = distance / (objetiveMaxn - objetiveMinn);
                    distance += front.get(j).getCrowdingDistance();
                    front.get(j).setCrowdingDistance(distance);
                } // for
            } // for
        } // crowdingDistanceAssing
    
  • 相关阅读:
    KVM 核心功能:磁盘虚拟化
    KVM 核心功能:内存虚拟化
    KVM 核心功能:CPU 虚拟化
    OpenStack 工作流组件: Mistral
    QT 5 种标准对话框使用方法,及实现效果,之二 —— 颜色对话框(QColorDialog)
    Git 安装
    在多人共同开发一个项目中使用 Git 的简单流程
    QT 5 种标准对话框使用方法,及实现效果,之一 —— 文件对话框(QFileDialog)
    Spark安装
    DATAFUN-推荐算法
  • 原文地址:https://www.cnblogs.com/cloud-ken/p/12717145.html
Copyright © 2011-2022 走看看