zoukankan      html  css  js  c++  java
  • 机器学习数学笔记|大数定理中心极限定理矩估计

    机器学习数学笔记|大数定理中心极限定理矩估计

    觉得有用的话,欢迎一起讨论相互学习~

    我的微博我的github我的B站

    本博客为七月在线邹博老师机器学习数学课程学习笔记
    为七月在线打call!!
    课程传送门

    概率密度/概率分布函数

    • 概率密度只是针对连续性变量而言,而分布函数是对所有随机变量取值的概率的讨论,包括连续性和离散型.
    • 已知连续型随机变量的密度函数,可以通过讨论及定积分的计算求出其分布函数;当已知连续型随机变量的分布函数时,对其求导就可得到密度函数。
    • 概率密度曲线y轴意义在于给定相同长度下,样本落在此段几率大小.其函数图像与x轴包围的面积表示取该值的概率,即概率密度函数从((-infty,x)的积分)
    • 概率分布函数(引自百度百科)
      • 在实际问题中,常常要研究一个随机变量ξ取值小于某一数值x的概率,这概率是x的函数,称这种函数为随机变量ξ的分布函数,简称分布函数,记作F(x),即F(x)=P(ξ<x) (-∞<x<+∞)
      • 由它并可以决定随机变量落入任何范围内的概率。 例如在桥梁和水坝的设计中,每年河流的最高水位ξ小于x米的概率是x的函数,这个函数就是最高水位ξ的分布函数.
      • 常见的离散型随机变量分布模型有“0-1分布”、二项式分布、泊松分布等;连续型随机变量分布模型有均匀分布、正态分布等。
      • 概率分布函数图像y轴的意义是(X<X_{i})时发生的概率.

    切比雪夫不等式

    大数定理

    伯努利定理

    中心极限定理

    样本的统计量

    • 矩估计的原理即是假设样本的K阶矩等于总体的K阶矩,可以估计出总体的参数

    矩估计

  • 相关阅读:
    Spring spEL
    Spring 使用外部部署文件
    Spring 自动装配
    spring 属性配置细节
    hdu 1054 Strategic Game
    fzu 2037 Maximum Value Problem
    将博客搬至CSDN
    HDU 4714 Tree2Cycle
    HDU 1009 The Shortest Path in Nya Graph
    POJ 1942 Paths on a Grid 组合数的优化
  • 原文地址:https://www.cnblogs.com/cloud-ken/p/7834398.html
Copyright © 2011-2022 走看看