zoukankan      html  css  js  c++  java
  • [转]Python numpy函数hstack() vstack() stack() dstack() vsplit() concatenate()

    Python numpy函数hstack() vstack() stack() dstack() vsplit() concatenate()

    觉得有用的话,欢迎一起讨论相互学习~

    我的微博我的github我的B站

    转载链接:https://blog.csdn.net/GarfieldEr007/article/details/51378296

    numpy.stack()函数

    • 函数原型:numpy.stack(arrays, axis=0)

    程序实例:

    >>> arrays = [np.random.randn(3, 4) for _ in range(10)]
    >>> np.stack(arrays, axis=0).shape
    (10, 3, 4)
    
    >>>
    
    >>> np.stack(arrays, axis=1).shape
    (3, 10, 4)
    
    >>>
    
    >>> np.stack(arrays, axis=2).shape
    (3, 4, 10)
    
    >>>
    
    >>> a = np.array([1, 2, 3])
    >>> b = np.array([2, 3, 4])
    >>> np.stack((a, b))
    array([[1, 2, 3],
           [2, 3, 4]])
    
    >>>
    
    >>> np.stack((a, b), axis=-1)
    array([[1, 2],
           [2, 3],
           [3, 4]])
    
    

    numpy.hstack()函数

    • 函数原型:numpy.hstack(tup)

    • 其中tup是arrays序列,The arrays must have the same shape, except in the dimensioncorresponding to axis (the first, by default).

    • 等价于:np.concatenate(tup, axis=1)

    程序实例:

    >>> a = np.array((1,2,3))
    >>> b = np.array((2,3,4))
    >>> np.hstack((a,b))
    array([1, 2, 3, 2, 3, 4])
    >>> a = np.array([[1],[2],[3]])
    >>> b = np.array([[2],[3],[4]])
    >>> np.hstack((a,b))
    array([[1, 2],
           [2, 3],
           [3, 4]])
    

    numpy.vstack()函数

    • 函数原型:numpy.vstack(tup)

    • 等价于:np.concatenate(tup, axis=0) if tup contains arrays thatare at least 2-dimensional.

    程序实例:

    >>> a = np.array([1, 2, 3])
    >>> b = np.array([2, 3, 4])
    >>> np.vstack((a,b))
    array([[1, 2, 3],
           [2, 3, 4]])
    
    >>>
    
    >>> a = np.array([[1], [2], [3]])
    >>> b = np.array([[2], [3], [4]])
    >>> np.vstack((a,b))
    array([[1],
           [2],
           [3],
           [2],
           [3],
           [4]])
    

    numpy.dstack()函数

    • 函数原型:numpy.dstack(tup)

    • 等价于:np.concatenate(tup, axis=2)

    程序实例:

    >>> a = np.array((1,2,3))
    >>> b = np.array((2,3,4))
    >>> np.dstack((a,b))
    array([[[1, 2],
            [2, 3],
            [3, 4]]])
    
    >>>
    
    >>> a = np.array([[1],[2],[3]])
    >>> b = np.array([[2],[3],[4]])
    >>> np.dstack((a,b))
    array([[[1, 2]],
           [[2, 3]],
           [[3, 4]]])
    

    numpy.concatenate()函数

    • 函数原型:numpy.concatenate((a1, a2, ...), axis=0)

    程序实例:

    >>> a = np.array([[1, 2], [3, 4]])
    >>> b = np.array([[5, 6]])
    >>> np.concatenate((a, b), axis=0)
    array([[1, 2],
           [3, 4],
           [5, 6]])
    >>> np.concatenate((a, b.T), axis=1)
    array([[1, 2, 5],
           [3, 4, 6]])
    
    This function will not preserve masking of MaskedArray inputs.
    >>>
    
    >>> a = np.ma.arange(3)
    >>> a[1] = np.ma.masked
    >>> b = np.arange(2, 5)
    >>> a
    masked_array(data = [0 -- 2],
                 mask = [False  True False],
           fill_value = 999999)
    >>> b
    array([2, 3, 4])
    >>> np.concatenate([a, b])
    masked_array(data = [0 1 2 2 3 4],
                 mask = False,
           fill_value = 999999)
    >>> np.ma.concatenate([a, b])
    masked_array(data = [0 -- 2 2 3 4],
                 mask = [False  True False False False False],
           fill_value = 999999)
    

    numpy.vsplit()函数

    • 函数原型:numpy.vsplit(ary, indices_or_sections)

    程序实例:

    >>> x = np.arange(16.0).reshape(4, 4)
    >>> x
    array([[  0.,   1.,   2.,   3.],
           [  4.,   5.,   6.,   7.],
           [  8.,   9.,  10.,  11.],
           [ 12.,  13.,  14.,  15.]])
    >>> np.vsplit(x, 2)
    [array([[ 0.,  1.,  2.,  3.],
           [ 4.,  5.,  6.,  7.]]),
     array([[  8.,   9.,  10.,  11.],
           [ 12.,  13.,  14.,  15.]])]
    >>> np.vsplit(x, np.array([3, 6]))
    [array([[  0.,   1.,   2.,   3.],
           [  4.,   5.,   6.,   7.],
           [  8.,   9.,  10.,  11.]]),
     array([[ 12.,  13.,  14.,  15.]]),
     array([], dtype=float64)]
    
    With a higher dimensional array the split is still along the first axis.
    >>>
    
    >>> x = np.arange(8.0).reshape(2, 2, 2)
    >>> x
    array([[[ 0.,  1.],
            [ 2.,  3.]],
           [[ 4.,  5.],
            [ 6.,  7.]]])
    >>> np.vsplit(x, 2)
    [array([[[ 0.,  1.],
            [ 2.,  3.]]]),
     array([[[ 4.,  5.],
            [ 6.,  7.]]])]
    
  • 相关阅读:
    事物
    性能优化
    eclipse中如何查看一个android模拟器的内部文件
    Android无线测试之—UiAutomator UiDevice API介绍二
    Android无线测试之—UiAutomator UiDevice API介绍一
    Linux最大打开文件描述符数
    Android无线测试之—UiAutmator运行命令介绍与快速调试
    Android无线测试之—UiAutomator编译与运行测试代码
    Android无线测试之—Genymotion配置过程中常见问题
    Android无线测试之—Genymotion模拟器环境搭建
  • 原文地址:https://www.cnblogs.com/cloud-ken/p/9946593.html
Copyright © 2011-2022 走看看