zoukankan      html  css  js  c++  java
  • Jetson Nano Vs. Intel Neural Compute Stick 2

    https://devblogs.nvidia.com/jetson-nano-ai-computing/

    Table 2 provides full results, including the performance of other platforms like the Raspberry Pi 3, Intel Neural Compute Stick 2, and Google Edge TPU Coral Dev Board:

    Table 2. Inference performance results from Jetson Nano, Raspberry Pi 3, Intel Neural Compute Stick 2, and Google Edge TPU Coral Dev Board

    Model

    Application

    Framework

    NVIDIA Jetson Nano

    Raspberry Pi 3

    Raspberry Pi 3 + Intel Neural Compute Stick 2

    Google Edge TPU Dev Board

    ResNet-50
    (224×224)

    Classification

    TensorFlow

    36 FPS

    1.4 FPS

    16 FPS

    DNR

    MobileNet-v2
    (300×300)

    Classification

    TensorFlow

    64 FPS

    2.5 FPS

    30 FPS

    130 FPS

    SSD ResNet-18 (960×544)

    Object Detection

    TensorFlow

    5 FPS

    DNR

    DNR

    DNR

    SSD ResNet-18 (480×272)

    Object Detection

    TensorFlow

    16 FPS

    DNR

    DNR

    DNR

    SSD ResNet-18 (300×300)

    Object Detection

    TensorFlow

    18 FPS

    DNR

    DNR

    DNR

    SSD Mobilenet-V2 (960×544)

    Object
    Detection

    TensorFlow

    8 FPS

    DNR

    1.8 FPS

    DNR

    SSD Mobilenet-V2 (480×272)

    Object Detection

    TensorFlow

    27 FPS

    DNR

    7 FPS

    DNR

    SSD Mobilenet-V2

    (300×300)

    Object Detection

    TensorFlow

    39 FPS

    1 FPS

    11 FPS

    48 FPS

    Inception V4

    (299×299)

    Classification

    PyTorch

    11 FPS

    DNR

    DNR

    9 FPS

    Tiny YOLO V3

    (416×416)

    Object Detection

    Darknet

    25 FPS

    0.5 FPS

    DNR

    DNR

    OpenPose

    (256×256)

    Pose Estimation

    Caffe

    14 FPS

    DNR

    5 FPS

    DNR

    VGG-19 (224×224)

    Classification

    MXNet

    10 FPS

    0.5 FPS

    5 FPS

    DNR

    Super Resolution (481×321)

    Image Processing

    PyTorch

    15 FPS

    DNR

    0.6 FPS

    DNR

    Unet

    (1x512x512)

    Segmentation

    Caffe

    18 FPS

    DNR

    5 FPS

    DNR

  • 相关阅读:
    前端启动摄像头的API
    落谷训练---
    树的遍历 (和) 玩转二叉树 的总结博客
    L2-010 排座位 (并查集)
    最长回文(manacher模板)
    L2-006 树的遍历
    面试题5:从尾到头打印链表
    面试题4:替换空格
    面试题3:二维数组中的查找
    poj 1511(spfa)
  • 原文地址:https://www.cnblogs.com/cloudrivers/p/11912121.html
Copyright © 2011-2022 走看看