正题
一开始的时候显然第(i)天以前可以放(i)个任务是吧,然后考虑用一棵线段树维护这个数量,设每天的这个值为(lev(i))
考虑在(t)这个截止时间位置放了一个任务,那((t,n))这个区间的$ lev(i)$ 都要减去(1)。
插入
设插入的终止时间为(t),这个任务的价值为(p)。那如何插入呢?
- 当这个任务与其他的任务不冲突的时候,直接加入完事。也就是当(min(lev(t ightarrow n))>0)的时候不会冲突,然后直接加进去就完事了
- 当这个任务与其他任务冲突的时候,一个显然的想法就是替换掉最小的,或者不替换。那这个最小的值在哪里找呢。为了我们可以把当前的任务加进去,那原来的这个最小值的(t_2)必须要比刚刚所说的((t,n))的最左边的(lev(i)=0)的(i)要小才可以释放空间让当前的任务可以插入。所以就在区间 ((1,id)) ((id)就是刚刚说的那个位置)找一个价值最小的任务替换掉,然后把替换掉的那个任务丢到没有用的一个集合。为什么是对的呢,因为如果不替换这个任务,那就要有一个更好的任务来替换这个任务,而这个任务比原来的要大,所以就要在中间额外插入一个任务,而显然这是做不到的,所以这个就是最优的了。
删除
- 显然要是没用这个任务直接删掉完事
其实这里你不用管就有(20)分了,岂不美哉?如果用了的话,就在没有用的里面去找个最大的替换要删掉的那个任务就行了。万一找不到的话就不用管了呗。 然后剩下的自己YY一下就出来了 我这么弱都YY出来了您们肯定随便就搞出来了
至于这个集合怎么维护,显然线段树套个multiset就行了
代码
至于代码为什么这么长
当然是为了更好地装逼说明啦!
记得点赞啊,我就没收过赞。。。
下次一定的走开(bushi
#include <set>
#include <cstdio>
#include <utility>
#include <algorithm>
using namespace std;
#define R register
#define LL long long
#define IT multiset<int>::iterator
const int MAXN = 3e5 + 10;
const int inf = 1e9 + 10;
inline int read()
{
char a = getchar();
int x = 0, f = 1;
for (; a > '9' || a < '0'; a = getchar())
if (a == '-')
f = -1;
for (; a >= '0' && a <= '9'; a = getchar())
x = x * 10 + a - '0';
return x * f;
}
inline char getc()
{
char a = getchar();
while (a != 'A' && a != 'D')
a = getchar();
return a;
}
int n, m;
LL Ans;
struct Round
{
int l, r, va;
};
class Tree_for_value
{
private:
int tag[MAXN << 2];
Round mn[MAXN << 2];
inline int ls(int x);
inline int rs(int x);
inline void update(int x);
inline void get(int x, int k);
inline void pushdown(int x);
public:
inline Round ask(int x, int l, int r, int Le, int Ri);
inline void chg(int x, int l, int r, int Le, int Ri, int k);
inline void build(int x, int l, int r);
} T1;
class Tree_for_mintask
{
private:
multiset<int> st[MAXN << 2];
pair<int, int> mn[MAXN << 2];
inline int ls(int x);
inline int rs(int x);
inline void update(int x);
public:
inline void build(int x, int l, int r);
inline void insert(int x, int l, int r, int ad, int p);
inline void del(int x, int l, int r, int ad, int p);
inline pair<int, int> ask(int x, int l, int r, int Le, int Ri);
inline int have(int x, int l, int r, int ad, int p);
} T2;
class Tree_for_maxtask
{
private:
multiset<int> st[MAXN << 2];
pair<int, int> mx[MAXN << 2];
inline int ls(int x);
inline int rs(int x);
inline void update(int x);
public:
inline void build(int x, int l, int r);
inline void insert(int x, int l, int r, int ad, int p);
inline void del(int x, int l, int r, int ad, int p);
inline pair<int, int> ask(int x, int l, int r, int Le, int Ri);
} T3;
int main()
{
freopen("d.in", "r", stdin);
freopen("d.out", "w", stdout);
n = read();
m = read();
T1.build(1, 1, n);
T2.build(1, 1, n);
T3.build(1, 1, n);
char op;
int t, p;
while (m--)
{
op = getc();
t = read();
p = read();
if (op == 'A')
{
Round pir = T1.ask(1, 1, n, t, n);
if (pir.va > 0)
{
Ans += p;
T1.chg(1, 1, n, t, n, -1);
T2.insert(1, 1, n, t, p);
}
else
{
int id = pir.l;
pair<int, int> tmp = T2.ask(1, 1, n, 1, id);
if (tmp.first > p)
T3.insert(1, 1, n, t, p);
else
{
Ans += p - tmp.first;
T2.del(1, 1, n, tmp.second, tmp.first);
T3.insert(1, 1, n, tmp.second, tmp.first);
T1.chg(1, 1, n, tmp.second, n, 1);
T2.insert(1, 1, n, t, p);
T1.chg(1, 1, n, t, n, -1);
}
}
}
else
{
if (T2.have(1, 1, n, t, p) == 0)
T3.del(1, 1, n, t, p);
else
{
Ans -= p;
T2.del(1, 1, n, t, p);
T1.chg(1, 1, n, t, n, 1);
Round tmp = T1.ask(1, 1, n, 1, n);
int id = tmp.va <= 0 ? tmp.r : 0;
if (id != n)
{
pair<int, int> tmp = T3.ask(1, 1, n, id + 1, n);
if (tmp.first != -inf)
{
T3.del(1, 1, n, tmp.second, tmp.first);
T2.insert(1, 1, n, tmp.second, tmp.first);
T1.chg(1, 1, n, tmp.second, n, -1);
Ans += tmp.first;
}
}
}
}
printf("%lld
", Ans);
}
return 0;
}
inline int Tree_for_value::ls(int x) { return x << 1; }
inline int Tree_for_value::rs(int x) { return x << 1 | 1; }
inline void Tree_for_value::update(int x)
{
if (mn[ls(x)].va == mn[rs(x)].va)
{
mn[x].va = mn[ls(x)].va;
mn[x].l = mn[ls(x)].l;
mn[x].r = mn[rs(x)].r;
}
if (mn[ls(x)].va < mn[rs(x)].va)
mn[x] = mn[ls(x)];
if (mn[ls(x)].va > mn[rs(x)].va)
mn[x] = mn[rs(x)];
}
inline void Tree_for_value::get(int x, int k)
{
tag[x] += k;
mn[x].va += k;
}
inline void Tree_for_value::pushdown(int x)
{
if (tag[x])
{
get(ls(x), tag[x]);
get(rs(x), tag[x]);
tag[x] = 0;
}
}
inline void Tree_for_value::build(int x, int l, int r)
{
if (l == r)
{
mn[x] = {l, l, l};
return;
}
int mid = l + r;
mid >>= 1;
build(ls(x), l, mid);
build(rs(x), mid + 1, r);
update(x);
}
inline void Tree_for_value::chg(int x, int l, int r, int Le, int Ri, int k)
{
if (l >= Le && r <= Ri)
{
get(x, k);
return;
}
pushdown(x);
int mid = l + r;
mid >>= 1;
if (Le <= mid)
chg(ls(x), l, mid, Le, Ri, k);
if (Ri > mid)
chg(rs(x), mid + 1, r, Le, Ri, k);
update(x);
}
inline Round Tree_for_value::ask(int x, int l, int r, int Le, int Ri)
{
if (l >= Le && r <= Ri)
return mn[x];
pushdown(x);
int mid = l + r;
mid >>= 1;
Round ans;
if (Le > mid)
ans = ask(rs(x), mid + 1, r, Le, Ri);
else if (Ri <= mid)
return ans = ask(ls(x), l, mid, Le, Ri);
else
{
Round lef = ask(ls(x), l, mid, Le, Ri), rig = ask(rs(x), mid + 1, r, Le, Ri);
if (lef.va < rig.va)
ans = lef;
if (lef.va > rig.va)
ans = rig;
if (lef.va == rig.va)
{
ans.l = lef.l;
ans.r = rig.r;
ans.va = lef.va;
}
}
update(x);
return ans;
}
inline int Tree_for_mintask::ls(int x) { return x << 1; }
inline int Tree_for_mintask::rs(int x) { return x << 1 | 1; }
inline void Tree_for_mintask::update(int x)
{
if (mn[ls(x)].first <= mn[rs(x)].first)
mn[x] = mn[ls(x)];
else
mn[x] = mn[rs(x)];
}
inline void Tree_for_mintask::build(int x, int l, int r)
{
if (l == r)
{
mn[x] = make_pair(inf, l);
return;
}
int mid = l + r;
mid >>= 1;
build(ls(x), l, mid);
build(rs(x), mid + 1, r);
update(x);
}
inline void Tree_for_mintask::insert(int x, int l, int r, int ad, int p)
{
if (l == r)
{
st[x].insert(p);
mn[x].first = min(mn[x].first, p);
return;
}
int mid = l + r;
mid >>= 1;
if (ad <= mid)
insert(ls(x), l, mid, ad, p);
else
insert(rs(x), mid + 1, r, ad, p);
update(x);
}
inline void Tree_for_mintask::del(int x, int l, int r, int ad, int p)
{
if (l == r)
{
st[x].erase(st[x].find(p));
if (st[x].size())
mn[x].first = *st[x].begin();
else
mn[x].first = inf;
return;
}
int mid = l + r;
mid >>= 1;
if (ad <= mid)
del(ls(x), l, mid, ad, p);
if (ad > mid)
del(rs(x), mid + 1, r, ad, p);
update(x);
}
inline pair<int, int> Tree_for_mintask::ask(int x, int l, int r, int Le, int Ri)
{
if (l >= Le && r <= Ri)
return mn[x];
int mid = l + r;
mid >>= 1;
if (Le > mid)
return ask(rs(x), mid + 1, r, Le, Ri);
if (Ri <= mid)
return ask(ls(x), l, mid, Le, Ri);
pair<int, int> lef = ask(ls(x), l, mid, Le, Ri), rig = ask(rs(x), mid + 1, r, Le, Ri);
if (lef.first <= rig.first)
return lef;
return rig;
}
inline int Tree_for_mintask::have(int x, int l, int r, int ad, int p)
{
if (l == r)
return st[x].find(p) != st[x].end();
int mid = l + r;
mid >>= 1;
if (ad <= mid)
return have(ls(x), l, mid, ad, p);
else
return have(rs(x), mid + 1, r, ad, p);
}
inline int Tree_for_maxtask::ls(int x) { return x << 1; }
inline int Tree_for_maxtask::rs(int x) { return x << 1 | 1; }
inline void Tree_for_maxtask::update(int x)
{
if (mx[ls(x)].first > mx[rs(x)].first)
mx[x] = mx[ls(x)];
else
mx[x] = mx[rs(x)];
}
inline void Tree_for_maxtask::build(int x, int l, int r)
{
if (l == r)
{
mx[x] = make_pair(-inf, l);
return;
}
int mid = l + r;
mid >>= 1;
build(ls(x), l, mid);
build(rs(x), mid + 1, r);
update(x);
}
inline void Tree_for_maxtask::insert(int x, int l, int r, int ad, int p)
{
if (l == r)
{
st[x].insert(p);
mx[x].first = max(mx[x].first, p);
return;
}
int mid = l + r;
mid >>= 1;
if (ad <= mid)
insert(ls(x), l, mid, ad, p);
else
insert(rs(x), mid + 1, r, ad, p);
update(x);
}
inline void Tree_for_maxtask::del(int x, int l, int r, int ad, int p)
{
if (l == r)
{
st[x].erase(st[x].find(p));
if (st[x].size())
{
IT it = st[x].end();
it--;
mx[x].first = *it;
}
else
mx[x].first = -inf;
return;
}
int mid = l + r;
mid >>= 1;
if (ad <= mid)
del(ls(x), l, mid, ad, p);
if (ad > mid)
del(rs(x), mid + 1, r, ad, p);
update(x);
}
inline pair<int, int> Tree_for_maxtask::ask(int x, int l, int r, int Le, int Ri)
{
if (l >= Le && r <= Ri)
return mx[x];
int mid = l + r;
mid >>= 1;
if (Le > mid)
return ask(rs(x), mid + 1, r, Le, Ri);
if (Ri <= mid)
return ask(ls(x), l, mid, Le, Ri);
pair<int, int> lef = ask(ls(x), l, mid, Le, Ri), rig = ask(rs(x), mid + 1, r, Le, Ri);
if (lef.first > rig.first)
return lef;
return rig;
}