设f[i][j]表示到(i,j)的方案数,则有
$f[i][j]=sum f[x][y](x<i,y<j,a[x][y]!=a[i][j])=sum f[x][y](x<i,y<j)-sum f[x][y](x<i,y<j,a[x][y]==a[i][j])$
然后运用CDQ分治即可$O(nmlog n)$解决。
#include<cstdio> const int N=752,P=1000000007; int n,m,k,i,j,a[N][N],f[N][N],T,all,s[N*N],v[N*N]; inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';} void solve(int l,int r){ if(l==r)return; int mid=(l+r)>>1; solve(l,mid); for(T++,all=0,j=1;j<=m;j++){ for(i=r;i>mid;i--){ if(v[a[i][j]]<T)v[a[i][j]]=T,s[a[i][j]]=0; f[i][j]=((f[i][j]+all-s[a[i][j]])%P+P)%P; } for(i=l;i<=mid;i++){ if(v[a[i][j]]<T)v[a[i][j]]=T,s[a[i][j]]=0; (s[a[i][j]]+=f[i][j])%=P,(all+=f[i][j])%=P; } } solve(mid+1,r); } int main(){ read(n),read(m),read(k); for(i=f[1][1]=1;i<=n;i++)for(j=1;j<=m;j++)read(a[i][j]); solve(1,n); return printf("%d",f[n][m]),0; }