[egin{eqnarray*}
&&sum_{i=0}^{n-1}left(ki+b-a_i
ight)^2\
&=&sum_{i=0}^{n-1}left(k^2i^2+b^2+a_i^2+2kbi-2kia_i-2ba_i
ight)\
&=&k^2sum_{i=0}^{n-1}i^2+nb^2+sum_{i=0}^{n-1}a_i^2+2kbsum_{i=0}^{n-1}i-2ksum_{i=0}^{n-1}ia_i-2bsum_{i=0}^{n-1}a_i\
end{eqnarray*}]
设
[egin{eqnarray*}
A&=&sum_{i=0}^{n-1}i^2\
B&=&sum_{i=0}^{n-1}i\
C&=&sum_{i=0}^{n-1}ia_i\
D&=&sum_{i=0}^{n-1}a_i\
end{eqnarray*}]
则只需最小化
[egin{eqnarray*}
&&Ak^2+nb^2+2kBb-2kC-2Db\
&=&nb^2+(2kB-2D)b+Ak^2-2kC\
end{eqnarray*}]
这是个关于$b$的二次函数,显然当$b$取$frac{D-kB}{n}$时取得最小值,将$b$用$k$表示,则
[egin{eqnarray*}
&&Ak^2+nb^2+2kBb-2kC-2Db\
&=&Ak^2+frac{left(D-kB
ight)^2}{n}+frac{2kBleft(D-kB
ight)}{n}-2kC-frac{2Dleft(D-kB
ight)}{n}\
&=&Ak^2+frac{-D^2-B^2k^2+2BDk}{n}-2Ck\
&=&frac{nAk^2-2nCk-D^2-B^2k^2+2BDk}{n}\
&=&frac{left(nA-B^2
ight)k^2+left(2BD-2nC
ight)k-D^2}{n}\
end{eqnarray*}]
这也是个关于$k$的二次函数,显然当$k$取$frac{nC-BD}{nA-B^2}$时取得最小值。直接计算即可,时间复杂度$O(n)$。
#include<cstdio> int n,i,j;double A,B,C,D,k,b; inline void read(int&a){ char c;bool f=0;a=0; while(!((((c=getchar())>='0')&&(c<='9'))||(c=='-'))); if(c!='-')a=c-'0';else f=1; while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0'; if(f)a=-a; } int main(){ for(read(n);i<n;i++)read(j),A+=1.0*i*i,B+=i,C+=1.0*i*j,D+=j; k=(C*n-B*D)/(A*n-B*B),b=(D-k*B)/n; return printf("%.7f %.7f",b,k),0; }