设$d=gcd(a,b),a=xd,b=yd$,则$a+b|ab$等价于$x+y|xyd$。
因为$x,y$互质,所以$x+y|d$。
假设$x<y$,那么对于固定的$x,y$,有$lfloorfrac{n}{y(x+y)} floor$个$d$。
枚举$y$,设$m=lfloorfrac{n}{y} floor$,则它的贡献为:
[egin{eqnarray*}
&&sum_{i=1}^{y-1}[gcd(i,y)=1]lfloorfrac{m}{i+y}
floor\
&=&sum_{i=1}^{y-1}sum_{d|gcd(i,y)}mu(d)lfloorfrac{m}{i+y}
floor\
&=&sum_{i=1}^{y-1}sum_{d|i,d|y}mu(d)lfloorfrac{m}{i+y}
floor\
&=&sum_{d|y}mu(d)sum_{d|i}lfloorfrac{m}{i+y}
floor
end{eqnarray*}]
枚举$y$的约数$d$,再分段计算$sum_{d|i}lfloorfrac{m}{i+y} floor$即可。
时间复杂度$O(N^frac{3}{4}log N)$。
#include<cstdio>
typedef long long ll;
const int N=46500,M=505030;
int n,m,lim,i,j,d,l,r,vis[N],tot,p[N],mu[N],g[N],v[M],nxt[M],ed;ll ans,t;
inline void add(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
int main(){
for(scanf("%d",&n);(ll)lim*(lim+1)<=n;lim++);
for(mu[1]=1,i=2;i<lim;i++){
if(!vis[i])p[tot++]=i,mu[i]=-1;
for(j=0;j<tot;j++){
if(i*p[j]>=lim)break;
vis[i*p[j]]=1;
if(i%p[j])mu[i*p[j]]=-mu[i];else break;
}
}
for(i=1;i<lim;i++)if(mu[i])for(j=i;j<lim;j+=i)add(j,i);
for(i=2;i<lim;i++)for(m=n/i,j=g[i];j;j=nxt[j]){
for(t=0,d=v[j],l=1;l<i&&i+l<=m;l=r+1){
r=m/(m/(i+l))-i;
if(r>=i)r=i-1;
t+=(ll)(r/d-(l-1)/d)*(m/(i+l));
}
ans+=t*mu[d];
}
return printf("%lld",ans),0;
}