一个点的感染时间为它到根路径上虚边数+1。
用Link-Cut Tree模拟虚实边切换,每次切换时等价于在一段或两段DFS序区间更新,线段树维护即可。
时间复杂度$O(nlog^2n)$。
#include<cstdio> typedef long long ll; const int N=100010,M=262145; int n,m,i,x,y,root; int g[N],nxt[N<<1],v[N<<1],ed; int top[N],child[N],fa[N],d[N],size[N],st[N],en[N],dfn,seq[N]; inline void addedge(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;} inline void swap(int&a,int&b){int c=a;a=b;b=c;} inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';} int tag[M];ll val[M]; inline void add1(int x,int a,int b,int p){val[x]+=(ll)(b-a+1)*p;tag[x]+=p;} inline void pb(int x,int a,int b){ if(tag[x]){ int mid=(a+b)>>1; add1(x<<1,a,mid,tag[x]),add1(x<<1|1,mid+1,b,tag[x]),tag[x]=0; } } inline void up(int x){val[x]=val[x<<1]+val[x<<1|1];} void build(int x,int a,int b){ if(a==b){val[x]=seq[a];return;} int mid=(a+b)>>1; build(x<<1,a,mid),build(x<<1|1,mid+1,b),up(x); } void change(int x,int a,int b,int c,int d,int p){ if(c>d)return; if(c<=a&&b<=d){add1(x,a,b,p);return;} pb(x,a,b); int mid=(a+b)>>1; if(c<=mid)change(x<<1,a,mid,c,d,p); if(d>mid)change(x<<1|1,mid+1,b,c,d,p); up(x); } ll ask(int x,int a,int b,int c,int d){ if(c>d)return 0; if(c<=a&&b<=d)return val[x]; pb(x,a,b); int mid=(a+b)>>1;ll t=0; if(c<=mid)t=ask(x<<1,a,mid,c,d); if(d>mid)t+=ask(x<<1|1,mid+1,b,c,d); return up(x),t; } inline int lca2(int x,int y){ int t; while(top[x]!=top[y])t=top[x],x=fa[top[x]]; return x==y?t:child[y]; } inline void subadd(int x,int p){ if(x==root){change(1,1,n,1,n,p);return;} if(st[x]>st[root]||en[x]<en[root]){change(1,1,n,st[x],en[x],p);return;} int y=lca2(root,x); change(1,1,n,1,st[y]-1,p),change(1,1,n,en[y]+1,n,p); } inline double query(int x){ if(x==root)return(double)ask(1,1,n,1,n)/n; if(st[x]>st[root]||en[x]<en[root])return(double)ask(1,1,n,st[x],en[x])/(en[x]-st[x]+1); int y=lca2(root,x); return(double)(ask(1,1,n,1,st[y]-1)+ask(1,1,n,en[y]+1,n))/(n-en[y]+st[y]-1); } int f[N],son[N][2],a[N];bool rev[N]; inline bool isroot(int x){return !f[x]||son[f[x]][0]!=x&&son[f[x]][1]!=x;} inline void rev1(int x){if(!x)return;swap(son[x][0],son[x][1]);rev[x]^=1;} inline void pb(int x){if(rev[x])rev1(son[x][0]),rev1(son[x][1]),rev[x]=0;} inline void rotate(int x){ int y=f[x],w=son[y][1]==x; son[y][w]=son[x][w^1]; if(son[x][w^1])f[son[x][w^1]]=y; if(f[y]){ int z=f[y]; if(son[z][0]==y)son[z][0]=x;else if(son[z][1]==y)son[z][1]=x; } f[x]=f[y];son[x][w^1]=y;f[y]=x; } inline void splay(int x){ int s=1,i=x,y;a[1]=i; while(!isroot(i))a[++s]=i=f[i]; while(s)pb(a[s--]); while(!isroot(x)){ y=f[x]; if(!isroot(y)){if((son[f[y]][0]==y)^(son[y][0]==x))rotate(x);else rotate(y);} rotate(x); } } inline int getson(int x){ pb(x); while(son[x][0])pb(x=son[x][0]); return x; } inline void access(int x){ for(int y=0;x;y=x,x=f[x]){ splay(x); if(son[x][1])subadd(getson(son[x][1]),1); if(y)subadd(getson(y),-1); son[x][1]=y; } } inline void makeroot(int x){access(x);splay(x);rev1(root=x);} void dfs1(int x,int pre,int dep){ size[x]=1;d[x]=dep;fa[x]=f[x]=pre; int heavy=0,sizemax=0,i; for(i=g[x];i;i=nxt[i])if(v[i]!=pre){ dfs1(v[i],x,dep+1),size[x]+=size[v[i]]; if(size[v[i]]>sizemax)sizemax=size[v[i]],heavy=v[i]; } if(heavy)child[x]=heavy; } void dfs2(int x,int pre,int t){ st[x]=++dfn;seq[dfn]=d[x];top[x]=t; if(child[x])dfs2(child[x],x,t); for(int i=g[x];i;i=nxt[i])if(v[i]!=pre&&v[i]!=child[x])dfs2(v[i],x,v[i]); en[x]=dfn; } char op[10]; int main(){ read(n);read(m); for(i=1;i<n;i++)read(x),read(y),addedge(x,y),addedge(y,x); dfs1(root=1,0,1);dfs2(1,0,1); build(1,1,n); while(m--){ scanf("%s%d",op,&x); if(op[2]=='L')access(x); if(op[2]=='C')makeroot(x); if(op[2]=='Q')printf("%.10f ",query(x)); } return 0; }