zoukankan      html  css  js  c++  java
  • XIII Open Grodno SU Championship

    A. Alice in the Wonderland

    按题意模拟。

    #include<stdio.h>
    #include<iostream>
    #include<string.h>
    #include<string>
    #include<ctype.h>
    #include<math.h>
    #include<set>
    #include<map>
    #include<vector>
    #include<queue>
    #include<bitset>
    #include<algorithm>
    #include<time.h>
    using namespace std;
    void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); }
    #define MS(x, y) memset(x, y, sizeof(x))
    #define ls o<<1
    #define rs o<<1|1
    typedef long long LL;
    typedef unsigned long long UL;
    typedef unsigned int UI;
    template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b > a)a = b; }
    template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b < a)a = b; }
    const int N = 0, M = 0, Z = 1e9 + 7, inf = 0x3f3f3f3f;
    template <class T1, class T2>inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; }
    int casenum, casei;
    
    struct A
    {
        int x, y, z;
    }t, tt, st, ed;
    queue<A> q;
    int n, m, h;
    char s[60][60][60];
    bool e[60][60][60];
    const int dx[4] = {0, 0, 1, -1}, dy[4] = {1, -1, 0, 0};
    
    int main()
    {
    	scanf("%d%d%d", &n, &m, &h);
    	for(int i = 1; i <= h; i ++){
            for(int j = 1; j <= n; j ++){
                scanf("%s", s[i][j] + 1);
            }
    	}
    	for(int i = 1; i <= h; i ++){
            for(int j = 1; j <= n; j ++){
                for(int k = 1; k <= m; k ++){
                    if(s[i][j][k] == 'A'){
                        st.x = j; st.y = k; st.z = i;
                    }
                    else if(s[i][j][k] == 'E'){
                        ed.x = j; ed.y = k; ed.z = i;
                    }
                }
            }
    	}
    	int flag = 0;
    	q.push(st);
    	e[st.z][st.x][st.y] = 1;
        while(! q.empty()){
            t = q.front(); q.pop();
            if(s[t.z][t.x][t.y] == 'E'){
                flag = 1;
                break;
            }
            if(s[t.z][t.x][t.y] == 'w'){
                int i;
                for(i = t.z; i <= h; i ++){ // 这里的方向要确认一下
                    if(s[i][t.x][t.y] != 'w'){
                        break;
                    }
                } i --;
                if(e[i][t.x][t.y] == 0){
                    tt.z = i; tt.x = t.x; tt.y = t.y;
                    q.push(tt);
                    e[i][t.x][t.y] = 1;
                }
                if(i != t.z) continue;
            }
            if(s[t.z][t.x][t.y] == 's'){
                for(int i = t.z; i <= h; i ++){
                    if(s[i][t.x][t.y] == 's' && e[i][t.x][t.y] == 0){
                        e[i][t.x][t.y] = 1;
                        tt.z = i; tt.x = t.x; tt.y = t.y;
                        q.push(tt);
                    }
                    else if(s[i][t.x][t.y] != 's') break;
                }
                for(int i = t.z; i >= 1; i --){
                    if(s[i][t.x][t.y] == 's' && e[i][t.x][t.y] == 0){
                        e[i][t.x][t.y] = 1;
                        tt.z = i; tt.x = t.x; tt.y = t.y;
                        q.push(tt);
                    }
                    else if(s[i][t.x][t.y] != 's') break;
                }
    
            }
            for(int i = 0; i < 4; i ++){
                tt.x = t.x + dx[i];
                tt.y = t.y + dy[i];
                tt.z = t.z;
                if(tt.x >= 1 && tt.x <= n && tt.y >= 1 && tt.y <= m && e[tt.z][tt.x][tt.y] == 0){
                    q.push(tt);
                    e[tt.z][tt.x][tt.y] = 1;
                }
            }
        }
        if(flag) puts("Yes"); else puts("No");
    
    	return 0;
    }
    /*
    【trick&&吐槽】
    
    
    【题意】
    
    
    【分析】
    
    3 3 3
    A..
    .w.
    ...
    ...
    .wE
    ...
    ...
    .w.
    ...
    
    【时间复杂度&&优化】
    3 3 3
    ...
    s.E
    ...
    ...
    s..
    ...
    ...
    s.A
    ...
    
    
    */
    

      

    B. Batrachomyomachia

    贪心,每次选承受能力最小的可行的。

    #include<stdio.h>
    #include<iostream>
    #include<string.h>
    #include<string>
    #include<ctype.h>
    #include<math.h>
    #include<set>
    #include<map>
    #include<vector>
    #include<queue>
    #include<bitset>
    #include<algorithm>
    #include<time.h>
    using namespace std;
    void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); }
    #define MS(x, y) memset(x, y, sizeof(x))
    #define ls o<<1
    #define rs o<<1|1
    typedef long long LL;
    typedef unsigned long long UL;
    typedef unsigned int UI;
    template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b > a)a = b; }
    template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b < a)a = b; }
    const int N = 210, M = 1e4 + 10, Z = 1e9 + 7, inf = 0x3f3f3f3f;
    template <class T1, class T2>inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; }
    int casenum, casei;
    int n, w;
    const double eps = 1e-12;
    int a[N][N], b[M];
    double f[N][N];
    bool del[111111];
    multiset<int> sot;
    multiset<int> :: iterator it, ir;
    int sgn(double x){
        if(fabs(x) < eps) return 0;
        return x > 0 ? 1 : -1;
    }
    int main()
    {
        scanf("%d%d", &n, &w);
        for(int i = 1; i < n; i ++) scanf("%d", &b[i]);
        sort(b+1,b+n);
        for(int i = 1; i <= 200; i ++){
            for(int j = 1; j <= i; j ++){
                a[i][j] = w;
            }
        }
        for(int i = 1; i <= 200; i ++){
            for(int j = 1; j <= i; j ++){
                f[i][j] = (f[i - 1][j] + f[i - 1][j - 1]) / 2 + (a[i - 1][j] + a[i - 1][j - 1]) / 2;
            }
        }
        for(int i=1;i<=200;i++){
            sort(f[i] + 1, f[i] + i + 1);
            reverse(f[i] + 1, f[i] + i + 1);
        }
        /*
        for(int i = 1; i <= 10; i ++){
            for(int j = 1; j <= i; j ++){
                printf("%.0f ", f[i][j]);
            }puts("");
        }
        */
        int ans = 0;
        for(int i = 2; i <= 200; i ++){
            for(int j = 1; j <= i; j ++){
                int flag=0;
                for(int k=1;k<n;k++)if(!del[k]&&sgn(b[k] - f[i][j])>=0){
                    flag=k;
                    break;
                }
    
                if(!flag){
                    ans = i - 1;
                    break;
                }
                del[flag]=1;
            }
            if(ans) break;
        }
        printf("%d
    ", ans);
    	return 0;
    }
    /*
    【trick&&吐槽】
    
    
    【题意】
    
    
    【分析】
    
    
    【时间复杂度&&优化】
    
    
    */
    

      

    C. Cherries

    将所有数字排序,那么一定是选取连续$B-A+1$个数进行配对,枚举所有方案即可。

    #include<stdio.h>
    #include<iostream>
    #include<string.h>
    #include<string>
    #include<ctype.h>
    #include<math.h>
    #include<set>
    #include<map>
    #include<vector>
    #include<queue>
    #include<bitset>
    #include<algorithm>
    #include<time.h>
    using namespace std;
    void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); }
    #define MS(x, y) memset(x, y, sizeof(x))
    #define ls o<<1
    #define rs o<<1|1
    typedef long long LL;
    typedef unsigned long long UL;
    typedef unsigned int UI;
    template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b > a)a = b; }
    template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b < a)a = b; }
    const int N = 5050, M = 0, Z = 1e9 + 7, inf = 0x3f3f3f3f;
    template <class T1, class T2>inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; }
    int casenum, casei;
    int n;
    int a[N];
    int main()
    {
    	while(~scanf("%d", &n))
    	{
    	    int A, B;
    	    scanf("%d%d", &A, &B);
            for(int i = 1; i <= n; ++i)
            {
                scanf("%d", &a[i]);
            }
            sort(a + 1, a + n + 1);
            int len = B - A;
            LL ans = 1e18;
            for(int i = 1; i + len <= n; ++i)
            {
                int j = i + len;
                LL tmp = 0;
                for(int k = i, x = A; k <= j; ++k, ++x)
                {
                    tmp += abs(a[k] - x);
                }
                gmin(ans, tmp);
            }
            printf("%lld
    ", ans);
    	}
    
    	return 0;
    }
    /*
    【trick&&吐槽】
    
    
    【题意】
    
    
    【分析】
    
    
    【时间复杂度&&优化】
    
    
    */
    

      

    D. Divisibility Game

    预处理出约数集合后爆搜+卡时即可通过。

    #include<stdio.h>
    #include<iostream>
    #include<string.h>
    #include<string>
    #include<ctype.h>
    #include<math.h>
    #include<set>
    #include<map>
    #include<vector>
    #include<queue>
    #include<bitset>
    #include<algorithm>
    #include<time.h>
    using namespace std;
    const int N=401;
    const int lim=7;
    const int lim2=3;
    int i,j,x,now,ans,sum,ave,n,a[N],q[N];
    vector<int>d[N];
    int ED1 = CLOCKS_PER_SEC * 0.65;
    int ED2 = CLOCKS_PER_SEC * 0.95;
    void dfs(int s,int x){
        
        if(x>n){
            for(int i=1;i<=n;i++)printf("%d ",q[i]);
            exit(0);
        }
        if(clock() > ED1)
        {
            return;
            //puts("-1");
            //exit(0);
        }
        for(vector<int>::iterator w=d[s].begin();w!=d[s].end();w++)
            for(int j=min(a[*w],1);j;j--){
                a[*w]-=j;
                for(int o=0;o<j;o++)q[x+o]=*w;
                dfs(s+(*w)*j,x+j);
                a[*w]+=j;
            }
    }
    void dfs2(int s,int x){
        
        if(x>n){
            for(int i=1;i<=n;i++)printf("%d ",q[i]);
            exit(0);
        }
        if(clock() > ED2)
        {
            puts("-1");
            exit(0);
        }
        for(vector<int>::iterator w=d[s].begin();w!=d[s].end();w++)
            for(int j=min(a[*w],1);j;j--){
                a[*w]-=j;
                for(int o=0;o<j;o++)q[x+o]=*w;
                dfs2(s+(*w)*j,x+j);
                a[*w]+=j;
            }
    }
    int main(){
        scanf("%d",&n);
        for(i=0;i<n;i++)scanf("%d",&x),a[x]++,sum+=x;
        for(i=0;i<=sum;i++){
            for(j=lim+1;j<=13;j++)
         //   for(j=13;j;j--)
                if(i%j==0&&a[j])d[i].push_back(j);
            for(j=lim2+1;j<=lim;j++)
         //   for(j=13;j;j--)
                if(i%j==0&&a[j])d[i].push_back(j);
            for(j=lim2;j;j--)
                if(i%j==0&&a[j])d[i].push_back(j);
        }
        dfs(0,1);
        for(i=0;i<=sum;i++)reverse(d[i].begin(),d[i].end());
        dfs2(0,1);
        puts("-1");
    }
    

      

    E. Enter the Word

    设$dp[i]$表示打出前$i$个字符的最小代价,那么有$dp[i-1]leq dp[i]leq dp[i-1]+1$。

    为了检查是否可以不$+1$,找到$dp$值的分界线,那么只要后面部分是前面部分的子串即可。

    设$f[i]$表示子串匹配结束位置是$i$是否可行,可以通过bitset加速。

    时间复杂度$O(frac{n^2}{64})$。

    #include<cstdio>
    #include<bitset>
    #include<cstring>
    using namespace std;
    const int N=200010;
    int n,i,r,ans;char a[N];bitset<N>f,v[26];
    int main(){
        scanf("%s",a);
        n=strlen(a);
        for(i=0;i<n;i++){
            a[i]-='a';
            f=f<<1&v[a[i]];
            if(!f.any()){
                for(int k=r;k<i;k++)v[a[k]][k]=1;
                r=i;
                ans++;
                f=v[a[i]];
            }
        }
        printf("%d",ans);
    }
    

      

    F. Formula 1

    按题意模拟即可,记录每个人的排名以及领先的圈数。

    #include<cstdio>
    #include<algorithm>
    using namespace std;
    const int N=100010;
    int n,m,i,x,f[N],pos[N],g[N];
    bool cmp(int x,int y){return g[x]==g[y]?pos[x]<pos[y]:g[x]>g[y];}
    int main(){
        scanf("%d%d",&n,&m);
        for(i=1;i<=n;i++){
            f[i]=i;
            pos[i]=i;
        }
        while(m--){
            scanf("%d",&x);
            for(i=1;i<=n;i++)if(f[i]==x)break;
            int o=i;
            if(o==1){
                g[x]++;
                for(i=1;i<n;i++)f[i]=f[i+1];
                f[n]=x;
                swap(f[n],f[n-1]);
            }else swap(f[o],f[o-1]);
            //for(i=1;i<=n;i++)printf("%d ",f[i]);puts("");
        }
        for(i=1;i<=n;i++)pos[f[i]]=i;
        sort(f+1,f+n+1,cmp);
        for(i=1;i<=n&&i<=6;i++)printf("%d ",f[i]);
    }
    

      

    G. Game with Coins

    将过程倒过来,则变成对于最后一个数,找到倒数第二个数,然后中间的数都要被最后一个数覆盖掉,区间DP即可。

    #include<cstdio>
    #include<algorithm>
    using namespace std;
    const int N=110;
    int n,i,j,a[N],f[N][N],ans;
    int dfs(int l,int r){
        if(~f[l][r])return f[l][r];
        int&t=f[l][r];
        t=0;
        int left=l+1,right=r;
        if(left>right)right+=n;
        for(int i=left;i<=right;i++)t=max(t,dfs(l,(i-1+n)%n)+dfs(i%n,r)+abs(a[l]-a[i%n]));
        return t;
    }
    int main(){
        scanf("%d",&n);
        for(i=0;i<n;i++)scanf("%d",&a[i]);
        for(i=0;i<n;i++)for(j=0;j<n;j++)if(i!=j)f[i][j]=-1;
        for(i=0;i<n;i++)for(j=0;j<n;j++)ans=max(ans,dfs(i,j));
        printf("%d",ans);
    }
    

      

    H. Hamnattan

    首先特判起点终点都在同一条街道上的情况。其余情况Dijkstra求最短路即可,需要现算代价。

    #include<cstdio>
    #include<queue>
    #include<cstdlib>
    #include<algorithm>
    #include<vector>
    using namespace std;
    typedef long long ll;
    typedef pair<int,int>P;
    typedef pair<ll,P>PI;
    typedef pair<ll,PI>PII;
    const ll inf=1LL<<60;
    const int N=110,M=500000;
    int sa[N],sb[N];
    int n,m,i,j,x,y,a[N],b[N],ns[N][N],ew[N][N],s[N][N];
    int sx,sy,ex,ey;
    ll d[N][N];
    int g[N][N],v[M][2],w[M][2],nxt[M],ed;
    priority_queue<PI,vector<PI>,greater<PI> >q;
    ll ans=inf;
    inline void add(int x,int y,int xx,int yy,int z,int zz){
        v[++ed][0]=xx;
        v[ed][1]=yy;
        w[ed][0]=z;
        w[ed][1]=zz;
        nxt[ed]=g[x][y];
        g[x][y]=ed;
    }
    inline void add2(int x,int y,int xx,int yy,int w,int ww){
        add(x,y,xx,yy,w,ww);
        add(xx,yy,x,y,w,ww);
    }
    inline int col(int x,int y,ll z){
        int NS=ns[x][y],EW=ew[x][y],S=s[x][y];
        z%=NS+EW;
        if(S)return z<EW;
        return z>=NS;
    }
    inline ll cal(int x,int y,int dir,ll z){
        while(col(x,y,z)!=dir)z++;
        return z;
    }
    inline void ext(int x,int y,ll z){
        if(d[x][y]>z)q.push(PI(d[x][y]=z,P(x,y)));
    }
    void CHECK(){
        int i,j;
        for(i=1;i<=n;i++)for(j=1;j<=m;j++){
            if(sy==ey)if(i<n)if(sb[j-1]==sy)if(sa[i-1]<=sx&&sx<=sa[i])
            if(sa[i-1]<=ex&&ex<=sa[i]){
                printf("%d",abs(sx-ex)+abs(sy-ey));
                exit(0);
            }
            if(sx==ex)if(j<m)if(sa[i-1]==sx)if(sb[j-1]<=sy&&sy<=sb[j])
                if(sb[j-1]<=ey&&ey<=sb[j]){
                printf("%d",abs(sx-ex)+abs(sy-ey));
                exit(0);
            }
        }
    }
    void EXT(int x,int y){
        int i,j;
        for(i=1;i<=n;i++)for(j=1;j<=m;j++){
            if(i<n)if(sb[j-1]==y)if(sa[i-1]<=x&&x<=sa[i]){
                ext(i,j,cal(i,j,1,x-sa[i-1]));
                ext(i+1,j,cal(i+1,j,1,sa[i]-x));
            }
            if(j<m)if(sa[i-1]==x)if(sb[j-1]<=y&&y<=sb[j]){
                ext(i,j,cal(i,j,0,y-sb[j-1]));
                ext(i,j+1,cal(i,j+1,0,sb[j]-y));
            }
        }
    }
    void FIN(int x,int y){
        int i,j;
        for(i=1;i<=n;i++)for(j=1;j<=m;j++){
            if(i<n)if(sb[j-1]==y)if(sa[i-1]<=x&&x<=sa[i]){
                ans=min(ans,d[i][j]+x-sa[i-1]);
                ans=min(ans,d[i+1][j]+sa[i]-x);
            }
            if(j<m)if(sa[i-1]==x)if(sb[j-1]<=y&&y<=sb[j]){
                ans=min(ans,d[i][j]+y-sb[j-1]);
                ans=min(ans,d[i][j+1]+sb[j]-y);
            }
        }
    }
    int main(){
        scanf("%d%d",&n,&m);
        for(i=1;i<n;i++){
            scanf("%d",&a[i]);
            sa[i]=sa[i-1]+a[i];
        }
        for(i=1;i<m;i++){
            scanf("%d",&b[i]);
            sb[i]=sb[i-1]+b[i];
        }
        for(i=1;i<=n;i++)for(j=1;j<=m;j++){
            if(i<n)add2(i,j,i+1,j,a[i],1);
            if(j<m)add2(i,j,i,j+1,b[j],0);
        }
        for(j=1;j<=m;j++)for(i=1;i<=n;i++)scanf("%d%d%d",&ns[i][j],&ew[i][j],&s[i][j]);
        scanf("%d%d%d%d",&sx,&sy,&ex,&ey);
        CHECK();
        for(i=1;i<=n;i++)for(j=1;j<=m;j++)d[i][j]=inf;
        EXT(sx,sy);
        while(!q.empty()){
            PI t=q.top();q.pop();
            int x=t.second.first,y=t.second.second;
            if(d[x][y]<t.first)continue;
            //printf("%d %d %lld
    ",x,y,t.first);
            for(i=g[x][y];i;i=nxt[i]){
                ext(v[i][0],v[i][1],cal(v[i][0],v[i][1],w[i][1],t.first+w[i][0]));
            }
        }
        FIN(ex,ey);
        printf("%lld",ans);
    }
    /*
    4 3
    10 10 10
    10 10
    1 99 0
    99 1 0
    50 99 0
    1 99 1
    1 99 0
    99 1 0
    20 41 1
    1 99 0
    99 1 0
    1 99 1
    99 1 0
    99 1 0
    1 10
    30 19
    */
    

      

    I. Integer Pairs

    只要$a[j]<0$即合法。

    #include<stdio.h>
    #include<iostream>
    #include<string.h>
    #include<string>
    #include<ctype.h>
    #include<math.h>
    #include<set>
    #include<map>
    #include<vector>
    #include<queue>
    #include<bitset>
    #include<algorithm>
    #include<time.h>
    using namespace std;
    void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); }
    #define MS(x, y) memset(x, y, sizeof(x))
    #define ls o<<1
    #define rs o<<1|1
    typedef long long LL;
    typedef unsigned long long UL;
    typedef unsigned int UI;
    template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b > a)a = b; }
    template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b < a)a = b; }
    const int N = 0, M = 0, Z = 1e9 + 7, inf = 0x3f3f3f3f;
    template <class T1, class T2>inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; }
    int casenum, casei;
    int n;
    int main()
    {
        while(~scanf("%d", &n))
    	{
    	    int neg = 0;
            for(int i = 1; i <= n; ++i)
            {
                int x; scanf("%d", &x);
                neg += x < 0;
            }
            LL ans = neg * (n - 1ll);
            printf("%lld
    ", ans);
    	}
    
    	return 0;
    }
    /*
    【trick&&吐槽】
    
    
    【题意】
    
    
    【分析】
    
    
    【时间复杂度&&优化】
    3
    -1 -2 -3
    
    */
    

      

    J. Jedi Training

    线段树维护$f[l][r]$表示对应区间内选择子序列的左端点奇偶性为$l$,右端点奇偶性为$r$时的最大和。

    #include<cstdio>
    #include<algorithm>
    using namespace std;
    #define rep(i) for(int i=0;i<2;i++)
    typedef long long ll;
    const int N=100010,M=262150;
    const ll inf=1LL<<60;
    int n,m,i,a[N],op,x,y;
    inline void up(ll&a,ll b){a<b?(a=b):0;}
    struct E{
        ll f[2][2];
        E(){rep(i)rep(j)f[i][j]=-inf;}
        void clr(){rep(i)rep(j)f[i][j]=-inf;}
        void set(int x,ll p){
            clr();
            f[x&1][x&1]=p;
        }
        E operator+(const E&b){
            E c;
            rep(i)rep(j)c.f[i][j]=max(f[i][j],b.f[i][j]);
            rep(i)rep(j)rep(k)up(c.f[i][k],f[i][j]+b.f[j^1][k]);
            return c;
        }
        void write(){
            ll t=-inf;
            rep(i)rep(j)up(t,f[i][j]);
            printf("%lld
    ",t);
        }
    }v[M];
    void build(int x,int a,int b){
        if(a==b){
            v[x].set(a,::a[a]);
            return;
        }
        int mid=(a+b)>>1;
        build(x<<1,a,mid),build(x<<1|1,mid+1,b);
        v[x]=v[x<<1]+v[x<<1|1];
    }
    void change(int x,int a,int b,int c,int d){
        if(a==b){
            v[x].set(a,d);
            return;
        }
        int mid=(a+b)>>1;
        if(c<=mid)change(x<<1,a,mid,c,d);else change(x<<1|1,mid+1,b,c,d);
        v[x]=v[x<<1]+v[x<<1|1];
    }
    E ask(int x,int a,int b,int c,int d){
        if(c<=a&&b<=d)return v[x];
        int mid=(a+b)>>1;
        E t;
        t.clr();
        if(c<=mid)t=ask(x<<1,a,mid,c,d);
        if(d>mid)t=t+ask(x<<1|1,mid+1,b,c,d);
        return t;
    }
    int main(){
        scanf("%d%d",&n,&m);
        for(i=1;i<=n;i++)scanf("%d",&a[i]);
        build(1,1,n);
        while(m--){
            scanf("%d%d%d",&op,&x,&y);
            if(op==1)change(1,1,n,x,y);
            else{
                ask(1,1,n,x,y).write();
            }
        }
    }
    

      

    K. Kings of a Round Table

    假设$1$号国王一定位于$1$号位置,并不区分剩下$7$个国王,则这种情况下方案数还要乘以$n imes 7!$。

    那么剩下的方案数大约只有$3 imes 10^8$个,爆搜打表即可。

    #include<cstdio>
    long long f[111];
    int n;
    int main(){
      f[9]=0;
      f[10]=0;
      f[11]=0;
      f[12]=0;
      f[13]=0;
      f[14]=0;
      f[15]=0;
      f[16]=0;
      f[17]=685440;
      f[18]=725760;
      f[19]=11491200;
      f[20]=6451200;
      f[21]=83825280;
      f[22]=38142720;
      f[23]=397837440;
      f[24]=170311680;
      f[25]=1441440000;
      f[26]=617460480;
      f[27]=4330609920;
      f[28]=1905684480;
      f[29]=11330323200;
      f[30]=5175878400;
      f[31]=26645794560;
      f[32]=12675317760;
      f[33]=57564017280;
      f[34]=28504707840;
      f[35]=116035920000;
      f[36]=59698114560;
      f[37]=220799779200;
      f[38]=117723513600;
      f[39]=400156848000;
      f[40]=220502016000;
      f[41]=695520483840;
      f[42]=395054150400;
      f[43]=1165870379520;
      f[44]=680891904000;
      f[45]=1893253824000;
      f[46]=1134285546240;
      f[47]=2989486241280;
      f[48]=1833544581120;
      f[49]=4604213577600;
      f[50]=2885462496000;
      f[51]=6934509429120;
      f[52]=4433085296640;
      f[53]=10236190124160;
      f[54]=6664974140160;
      f[55]=14837041296000;
      f[56]=9826142699520;
      f[57]=21152159804160;
      f[58]=14230860215040;
      f[59]=29701625184000;
      f[60]=20277521510400;
      f[61]=41130725126400;
      f[62]=28465795572480;
      f[63]=56232969811200;
      f[64]=39416274616320;
      f[65]=75976140240000;
      f[66]=53892855878400;
      f[67]=101531626035840;
      f[68]=72828098703360;
      f[69]=134307318499200;
      f[70]=97351809811200;
      scanf("%d",&n);
      printf("%lld",f[n]);
    }
    

      

    L. Lines and Polygon

    求出直线与凸包的交点,然后在附近枚举即可得到最近点。

    #include<stdio.h>
    #include<iostream>
    #include<string.h>
    #include<string>
    #include<ctype.h>
    #include<math.h>
    #include<set>
    #include<map>
    #include<vector>
    #include<queue>
    #include<bitset>
    #include<algorithm>
    #include<time.h>
    using namespace std;
    void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); }
    #define MS(x, y) memset(x, y, sizeof(x))
    #define ls o<<1
    #define rs o<<1|1
    typedef unsigned long long UL;
    typedef unsigned int UI;
    template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b > a)a = b; }
    template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b < a)a = b; }
    const int N = 1e5 + 10, M = 0, Z = 1e9 + 7, inf = 0x3f3f3f3f;
    template <class T1, class T2>inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; }
    int casenum, casei;
    
    const long double eps = 1e-8;
    int sgn(double x)
    {
        if(fabs(x) < eps) return 0;
        return x > 0 ? 1 : -1;
    }
    struct point
    {
        long double x, y;
        point(){}
        point(long double a, long double b){x = a; y = b;}
        long double det (const point &b)const{
            return x * b.y - y * b.x;
        }
        friend bool operator < (const point &a, const point &b){
            if(sgn(a.x - b.x) == 0) return sgn(a.y - b.y) < 0;
            return sgn(a.x - b.x) < 0;
        }
        friend point operator - (const point &a, const point &b){
            return point(a.x - b.x, a.y - b.y);
        }
    };
    struct Convex
    {
        int n;
        vector<point> a, upper, lower;
        Convex(){}
        Convex (vector<point> _a) : a(_a){
            n = a.size();
            int ptr = 0;
            for(int i = 1; i < n; i ++) if(a[ptr] < a[i]) ptr = i;
            for(int i = 0; i <= ptr; i ++) lower.push_back(a[i]);
            for(int i = ptr; i < n; i ++) upper.push_back(a[i]);
            upper.push_back(a[0]);
        }
        int sign(long double x){
            if(fabs(x) < eps) return 0;
            return x > 0 ? 1 : -1;
        }
    
        pair<long double, int> get_tangent(vector<point> &convex, point vec){
            int l = 0, r = (int) convex.size() - 2;
            for(; l + 1 < r;){
                int mid = (l + r) / 2;
                if(sign((convex[mid + 1] - convex[mid]).det(vec)) > 0) r = mid;
                else l = mid;
            }
            return max(make_pair(vec.det(convex[r]), r), make_pair(vec.det(convex[0]), 0));
        }
        int binary_search(point u, point v, int l, int r){
            int sl = sign((v - u).det(a[l % n] - u));
            for(; l + 1 < r;){
                int mid = (l + r) / 2;
                int smid = sign((v - u).det(a[mid % n] - u));
                if(smid == sl) l = mid;
                else r = mid;
            }
            return l % n;
        }
        int get_tangent(point vec){
            pair<long double, int> ret = get_tangent(upper, vec);
            ret.second = (ret.second + (int)lower.size() - 1) % n;
            ret = max(ret, get_tangent(lower, vec));
            return ret.second;
        }
        bool get_intersection(point u, point v, int &i0, int &i1){
            int p0 = get_tangent(u - v), p1 = get_tangent(v - u);
            if(sign((v - u).det(a[p0] - u)) * sign((v - u).det(a[p1] - u)) < 0){
                if(p0 > p1) swap(p0, p1);
                i0 = binary_search(u, v, p0, p1);
                i1 = binary_search(u, v, p1, p0 + n);
                return true;
            }
            else{
                return false;
            }
        }
    };
    int n;
    point p[N];
    vector<point> a, b;
    Convex D;
    int m;
    long double A, B, C;
    
    long double cal(int i0)
    {
        return fabs((A * D.a[i0].x + B * D.a[i0].y + C) );
    }
    const double INF = 1e9;
    int main()
    {
    	scanf("%d", &n);
    	for(int i = 0; i < n; i ++) {
            //scanf("%lf%lf", &p[i].x, &p[i].y);
            double x, y;
            scanf("%lf%lf", &x, &y);
            p[i].x = x; p[i].y = y;
            //a.push_back(p[i]);
    	}
    	for(int i = n - 1; i >= 0; i --) a.push_back(p[i]);
    	int ptr = 0;
    	for(int i = 1; i < n; i ++){
            if(a[ptr] < a[i]) ptr = i;
    	}
    	for(int i = ptr; i < n; i ++){
            b.push_back(a[i]);
    	}
    	for(int i = 0; i < ptr; i ++){
            b.push_back(a[i]);
    	}
    	D = Convex(b);
    	scanf("%d", &m);
        for(int i = 1; i <= m; i ++){
            double AA, BB, CC;
            scanf("%lf%lf%lf", &AA, &BB, &CC);
            A = AA; B = BB; C = CC;
            double ans = 1e18;
            int i0, i1;
            point p0, p1;
            if(A){
                p0.y = 0, p0.x = -C / A;
                p1.y = INF, p1.x = (- C - B * INF) / A;
            }
            else if(B){
                p0.x = 0, p0.y = -C / B;
                p1.x = INF, p1.y = (-C - INF * A) / B;
            }
            //else while(1);
            if(D.get_intersection(p0, p1, i0, i1)){
            #define next(i) ((i + 1) % n)
            #define pre(i) ((i - 1 + n) % n)
                for(int j = 0; j < 10; j ++){
                    gmin(ans, cal(i0));
                    i0 = next(i0);
                }
                for(int j = 0; j < 20; j ++){
                    gmin(ans, cal(i0));
                    i0 = pre(i0);
                }
                for(int j = 0; j < 10; j ++){
                    gmin(ans, cal(i1));
                    i1 = next(i1);
                }
                for(int j = 0; j < 20; j ++){
                    gmin(ans, cal(i1));
                    i1 = pre(i1);
                }
            }
            else{
                //ans = 0;
                //while(1);
                for(int j = 0; j < n; j ++) gmin(ans, cal(j));
            }
            double ANS = ans / sqrt(A * A + B * B);
            printf("%.6f
    ", ANS);
        }
    	return 0;
    }
    /*
    【trick&&吐槽】
    
    4
    1 3
    3 1
    1 -1
    -1 1
    1
    0 4 -5
    【题意】
    
    
    【分析】
    
    
    【时间复杂度&&优化】
    
    
    */
    

      

    M. MIPT Campus

    留坑。

  • 相关阅读:
    Something about Giraffe
    Review of TD-Leaf(lambda)
    Dancing Links and Exact Cover
    Month Scheme
    Common Bugs in C Programming
    python爬虫学习(11) —— 也写个AC自动机
    数据结构/PTA-邻接矩阵存储图的深度优先遍历/图
    SDUST 2020/数据结构/期末集合.part3
    数据结构/PTA-据后序和中序遍历输出先序遍历/树
    数据结构/PTA-PTA排名汇总/结构体快排
  • 原文地址:https://www.cnblogs.com/clrs97/p/7675261.html
Copyright © 2011-2022 走看看