zoukankan      html  css  js  c++  java
  • POJ 2407 Relatives (欧拉函数)

    题目链接

    Description

    Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there are no integers x > 1, y > 0, z > 0 such that a = xy and b = xz.

    Input

    There are several test cases. For each test case, standard input contains a line with n <= 1,000,000,000. A line containing 0 follows the last case.

    Output

    For each test case there should be single line of output answering the question posed above.

    Sample Input

    7
    12
    0

    Sample Output

    6
    4

    分析:
    求一个数的所有的小于该数且与该数互质的数的个数,也就是欧拉函数的应用。

    直接套欧拉函数公式,即将n素分解后有n=p1^k1p2^k2…pm^km,则euler(n)=n(1-1/p1)(1-1/p2)…*(1-1/pm) 。

    代码:

    #include<cstdio>
    #include<iostream>
    using namespace std;
    typedef long long ll;
    ll get_euler(ll n)//欧拉函数的应用
    {
        ll ans=n;
        for(ll i=2; i*i<=n; i++)
        {
            if(n%i==0)
            {
                ans=ans/i*(i-1);
                while(n%i==0)
                    n/=i;
            }
        }
        if(n>1)
            ans=ans/n*(n-1);
        return ans;
    }
    int main()
    {
        ll n;
        while(scanf("%lld",&n),n)
            printf("%lld
    ",get_euler(n));
        return 0;
    }
    
  • 相关阅读:
    1755:菲波那契数列
    1788:Pell数列
    3089:爬楼梯
    7832:最接近的分数
    7649:我家的门牌号
    7216:Minecraft
    7213:垃圾炸弹
    2983:谁是你的潜在朋友
    2723:因子问题
    2722:和数
  • 原文地址:https://www.cnblogs.com/cmmdc/p/8794003.html
Copyright © 2011-2022 走看看