zoukankan      html  css  js  c++  java
  • 牛客网暑期ACM多校训练营 第九场

    HPrefix Sum

    study from : https://blog.csdn.net/mitsuha_/article/details/81774727

    k较小。分离x和k。

     另外的可能:求a[k][x],x不确定,想到的是求sum(a[k][1]+a[k][2]+...+a[k][x]),树状数组 sum(x)-sum(x-1)。这题用不上。

      1 #include <cstdio>
      2 #include <cstdlib>
      3 #include <cmath>
      4 #include <cstring>
      5 #include <string>
      6 #include <algorithm>
      7 #include <set>
      8 #include <map>
      9 #include <queue>
     10 #include <iostream>
     11 using namespace std;
     12 
     13 #define ll long long
     14 
     15 const int maxn=1e5+10;
     16 const int maxk=40+1;
     17 const int inf=1e9;
     18 const ll mod=1e9+7;
     19 const double eps=1e-8;
     20 
     21 ll f[maxk][maxn],mul[maxn],chu[maxn];
     22 int n,k;
     23 
     24 ll C(int x,int y)
     25 {
     26     if (x<0)
     27     {
     28         x=y-1-x;
     29         return (y&1?-1:1)*mul[x]*chu[x-y]%mod*chu[y]%mod;
     30     }
     31     if (x<y)
     32         return 0;
     33     return mul[x]*chu[x-y]%mod*chu[y]%mod;
     34 }
     35 
     36 ll _pow(ll a,ll b)
     37 {
     38     ll y=1;
     39     while (b)
     40     {
     41         if (b &1)
     42             y=y*a%mod;
     43         a=a*a%mod;
     44         b>>=1;
     45     }
     46     return y;
     47 }
     48 
     49 void update(int x,ll y,int j)
     50 {
     51     while (x<=n)
     52     {
     53         f[j][x]=(f[j][x]+y)%mod;
     54         x+=x&-x;
     55     }
     56 }
     57 
     58 ll cal(int x,int j)
     59 {
     60     ll sum=0;
     61     while (x)
     62     {
     63         sum=(sum+f[j][x])%mod;
     64         x-=x&-x;
     65     }
     66     return sum;
     67 }
     68 
     69 int main()
     70 {
     71     int m,i,j,mode,x;
     72     ll sum=0,y;
     73     scanf("%d%d%d",&n,&m,&k);
     74     k--;
     75     mul[0]=1;
     76     for (i=1;i<=n;i++)
     77         mul[i]=mul[i-1]*i%mod;
     78     chu[n]=_pow(mul[n],mod-2);
     79     for (i=n-1;i>=0;i--)
     80         chu[i]=chu[i+1]*(i+1)%mod;
     81     while (m--)
     82     {
     83         scanf("%d",&mode);
     84         if (mode)
     85         {
     86             scanf("%d",&x);
     87             sum=0;
     88             for (j=0;j<=k;j++)
     89                 sum=(sum+C(x,j)*cal(x,j))%mod;
     90             printf("%lld
    ",sum);
     91         }
     92         else
     93         {
     94             scanf("%d%lld",&x,&y);
     95             for (j=0;j<=k;j++)
     96                 update(x,C(k-x,k-j)*y%mod,j);
     97         }
     98     }
     99     return 0;
    100 }
    101 /*
    102 4 11 3
    103 0 3 1
    104 1 4
    105 */

    CGambling

     1 #include <cstdio>
     2 #include <cstdlib>
     3 #include <cmath>
     4 #include <cstring>
     5 #include <string>
     6 #include <algorithm>
     7 #include <set>
     8 #include <map>
     9 #include <queue>
    10 #include <iostream>
    11 using namespace std;
    12 
    13 #define ll long long
    14 
    15 const int maxn=1e5+10;
    16 const int inf=1e9;
    17 const double eps=1e-8;
    18 const ll mod=1e9+7;
    19 
    20 ll mul[maxn<<1],chu[maxn<<1];
    21 
    22 ll _pow(ll a,ll b)
    23 {
    24     ll y=1;
    25     while (b)
    26     {
    27         if (b&1)
    28             y=y*a%mod;
    29         a=a*a%mod;
    30         b>>=1;
    31     }
    32     return y;
    33 }
    34 
    35 ll C(ll x,ll y)
    36 {
    37     return mul[x]*chu[x-y]%mod*chu[y]%mod;
    38 }
    39 
    40 int main()
    41 {
    42     int n,i,j,a;
    43     scanf("%d",&n);
    44     mul[0]=1;
    45     for (i=1;i<=2*n;i++)
    46         mul[i]=mul[i-1]*i%mod;
    47     chu[2*n]=_pow(mul[2*n],mod-2);
    48     for (i=2*n-1;i>=0;i--)
    49         chu[i]=chu[i+1]*(i+1)%mod;
    50     i=0,j=0;
    51     while (~scanf("%d",&a))
    52     {
    53         printf("%lld
    ",_pow(2,1+i+j)*C(2*n-2-i-j,n-i-1)%mod);
    54         i+=(a==0),j+=(a==1);
    55     }
    56     return 0;
    57 }
    58 /*
    59 
    60 */

    GLongest Common Subsequence

  • 相关阅读:
    C# 上传下载文件
    ASP.Net
    C#计算程序执行时间
    关于vs连接access
    CSS
    C# 获取命名空间,类,方法名
    C# Split
    C#方法参数:params,ref,out,可选参数,命名参数
    java学习手记:JDK的安装配置
    Mysql/SQLServer数据类型与java基本数据类型的对应
  • 原文地址:https://www.cnblogs.com/cmyg/p/10707424.html
Copyright © 2011-2022 走看看