zoukankan      html  css  js  c++  java
  • Spark2.4.0源码——DAGScheduler

      前言

      Spark会将用户提交的作业看作一个job,在提交的时候首先将job转换为一系列的RDD,并按照RDD之间的依赖关系构建DAG(有向无环图),DAGScheduler会按照RDD依赖的不同将DAG划分为不同的stage,每个stage内部按照RDD分区数创建多个task,最后将task封装成taskSets发送到TaskScheduler调度执行。

      RDD依赖

      窄依赖(NarrowDependency):下游RDD与上游RDD的分区是一一对应的关系;

      宽依赖(ShuffleDependency):下游RDD的一个分区对应上游RDD的多个分区。

      Partitioner

      如果RDD间的依赖关系是Shuffle依赖,spark通过分区计算器partitioner来确定上游RDD的分区数据输出到下游RDD的哪个分区。

      spark大部分API默认采用HashPartitioner,将key的hashCode值与分区数进行取模运算后得到该key的分区下标;HashPartitioner的劣势:Java中数组的hashCode是基于数组对象本身的,如果key的数据类型为数组,数组内容一样的key可能会被分到不同的分区。

      RangePartitioner:先从整个RDD中抽取样本并排序取得一个Array[key]类型的数组变量rangeBounds,判断key在rangeBounds中的范围,得到该key在下游RDD中分区的下标。

      当然也可以自定义partitioner,写一个类继承自抽象类Partitioner并重写numPartitions、getPartition和equals方法即可。

      DAGScheduler

      DAGScheduler会将DAG中的RDD按照依赖类型划分为不同的stage,并构建这些stage的依赖关系,让没有依赖的stage并行计算,有依赖的stage串行运算,提升资源使用率和运行效率;stage分为最下游的ResultStage和需要shuffle的ShuffleMapStage。

      1、JobListener & JobWaiter & ActiveJob & DAGSchedulerEventProcessLoop

      特质JobListener用于对作业中每个task执行结果进行监听,JobWaiter实现了JobListener并最终确定作业的成功或失败;ActiveJob表示已经激活的Job;DAGSchedulerEventProcessLoop是DAGScheduler内部的事件循环处理器,spark组件都通过向DAGScheduler投递DAGSchedulerEvent来使用DAGScheduler,DAGSchedulerEventProcessLoop将处理这些Event并调用DAGScheduler的不同方法,它内部有三个方法:doOnReceive()用于调用DAGScheduler的方法处理不同的事件、onError()和onStop()。

      2、提交Job

      spark程序中每触发一次action算子,就会提交一次job,job会被转换成一系列RDD并调用DAGScheduler.runJob方法,内部调用submitJob方法。

    def runJob[T, U](
          rdd: RDD[T],
          func: (TaskContext, Iterator[T]) => U,
          partitions: Seq[Int],
          callSite: CallSite,
          resultHandler: (Int, U) => Unit,
          properties: Properties): Unit = {
        //生成运行job的启动时间
        val start = System.nanoTime
        //提交job,submitJob是异步执行的,所以会立刻返回JobWaiter对象
        val waiter = submitJob(rdd, func, partitions, callSite, resultHandler, properties)
        //等待job处理,如果成功打印日志,如果失败打印日志并抛出异常
        ThreadUtils.awaitReady(waiter.completionFuture, Duration.Inf)
        waiter.completionFuture.value.get match {
          case scala.util.Success(_) =>
            logInfo("Job %d finished: %s, took %f s".format
              (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
          case scala.util.Failure(exception) =>
            logInfo("Job %d failed: %s, took %f s".format
              (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
            // SPARK-8644: Include user stack trace in exceptions coming from DAGScheduler.
            val callerStackTrace = Thread.currentThread().getStackTrace.tail
            exception.setStackTrace(exception.getStackTrace ++ callerStackTrace)
            throw exception
        }
      }
    View Code

      submitJob方法内部根据job创建jobWaiter,并向DAGSchedulerEventProcessLoop发送jobSubmitted事件。

    def submitJob[T, U](
          rdd: RDD[T],
          func: (TaskContext, Iterator[T]) => U,
          partitions: Seq[Int],
          callSite: CallSite,
          resultHandler: (Int, U) => Unit,
          properties: Properties): JobWaiter[U] = {
        // Check to make sure we are not launching a task on a partition that does not exist.
        //获取当前job的最大分区数并检查,如果有不存在的分区则抛出异常
        val maxPartitions = rdd.partitions.length
        partitions.find(p => p >= maxPartitions || p < 0).foreach { p =>
          throw new IllegalArgumentException(
            "Attempting to access a non-existent partition: " + p + ". " +
              "Total number of partitions: " + maxPartitions)
        }
        //生成下一个job的ID
        val jobId = nextJobId.getAndIncrement()
        //如果job的分区数为0,创建一个totalTasks属性为0的JobWaiter并返回,JobWaiter会将jobPromise设置为Success表示job处理成功
        if (partitions.size == 0) {
          // Return immediately if the job is running 0 tasks
          return new JobWaiter[U](this, jobId, 0, resultHandler)
        }
        //如果job的分区数大于0,创建一个等待执行完成的JobWaiter,向DAGSchedulerEventProcessLoop发送JobSubmited事件
        assert(partitions.size > 0)
        val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _]
        val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)
        eventProcessLoop.post(JobSubmitted(
          jobId, rdd, func2, partitions.toArray, callSite, waiter,
          SerializationUtils.clone(properties)))
        //返回JobWaiter对象
        waiter
      }
    View Code

      DAGSchedulerEventProcessLoop接收到JobSubmited事件后会调用DAGScheduler的handleJobSubmited方法,创建ResultStage并提交,实现如下

    private[scheduler] def handleJobSubmitted(jobId: Int,
          finalRDD: RDD[_],
          func: (TaskContext, Iterator[_]) => _,
          partitions: Array[Int],
          callSite: CallSite,
          listener: JobListener,
          properties: Properties) {
        var finalStage: ResultStage = null
        //创建ResultStage,期间可能会发生异常,比如运行在HadoopRDD上的任务依赖的HDFS文件被删除了,异常发生时需要调用JobWaiter的jobFailed方法
        try {
          finalStage = createResultStage(finalRDD, func, partitions, jobId, callSite)
        } catch {
          ...
        }
        
        // Job submitted, clear internal data.
        barrierJobIdToNumTasksCheckFailures.remove(jobId)
        //创建ActiveJob
        val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
        //清除cacheLocs缓存中RDD的分区位置信息
        clearCacheLocs()
        logInfo("Got job %s (%s) with %d output partitions".format(
          job.jobId, callSite.shortForm, partitions.length))
        logInfo("Final stage: " + finalStage + " (" + finalStage.name + ")")
        logInfo("Parents of final stage: " + finalStage.parents)
        logInfo("Missing parents: " + getMissingParentStages(finalStage))
        
        //生成job提交的时间
        val jobSubmissionTime = clock.getTimeMillis()
        //将jobID与刚创建的activeJob之间的对应关系放入jobIdToActiveJob中
        jobIdToActiveJob(jobId) = job
        //将刚创建的activeJob放入activeJobs集合
        activeJobs += job
        //让finalStage的_activeJob属性持有刚创建的activeJob
        finalStage.setActiveJob(job)
        //获取当前job的所有stage对应的stageinfo
        val stageIds = jobIdToStageIds(jobId).toArray
        val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
        //向LiveListenerBus投递sparkListenerJobStart事件,缓存stageId
        listenerBus.post(
          SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
        //提交ResultStage
        submitStage(finalStage)
      }
    View Code

     3、构建Stage

    private def createResultStage(
          rdd: RDD[_],
          func: (TaskContext, Iterator[_]) => _,
          partitions: Array[Int],
          jobId: Int,
          callSite: CallSite): ResultStage = {
        //RDD的一些初始检查
        checkBarrierStageWithDynamicAllocation(rdd)
        checkBarrierStageWithNumSlots(rdd)
        checkBarrierStageWithRDDChainPattern(rdd, partitions.toSet.size)
        //获取所有父stage的列表
        val parents = getOrCreateParentStages(rdd, jobId)
        //生成resultStage的标识
        val id = nextStageId.getAndIncrement()
        //创建ResultStage
        val stage = new ResultStage(id, rdd, func, partitions, parents, jobId, callSite)
        //将ResultStage与它的ID对应关系添加到stageIdToStage缓存中
        stageIdToStage(id) = stage
        //更新job的身份标识与ResultStage的映射关系
        updateJobIdStageIdMaps(jobId, stage)
        stage
      }
      
    //获取或创建给定RDD的所有父stage,这些stage将被分配给jobId对应的job
    private def getOrCreateParentStages(rdd: RDD[_], firstJobId: Int): List[Stage] = {
        getShuffleDependencies(rdd).map { shuffleDep =>
          getOrCreateShuffleMapStage(shuffleDep, firstJobId)
        }.toList
      }
      
    //获取给定RDD直接父类的shuffle依赖
    private[scheduler] def getShuffleDependencies(
          rdd: RDD[_]): HashSet[ShuffleDependency[_, _, _]] = {
        val parents = new HashSet[ShuffleDependency[_, _, _]]
        val visited = new HashSet[RDD[_]]
        val waitingForVisit = new ArrayStack[RDD[_]]
        waitingForVisit.push(rdd)
        while (waitingForVisit.nonEmpty) {
          val toVisit = waitingForVisit.pop()
          if (!visited(toVisit)) {
            visited += toVisit
            toVisit.dependencies.foreach {
              case shuffleDep: ShuffleDependency[_, _, _] =>
                parents += shuffleDep
              case dependency =>
                waitingForVisit.push(dependency.rdd)
            }
          }
        }
        parents
      }
      
    private def getOrCreateShuffleMapStage(
          shuffleDep: ShuffleDependency[_, _, _],
          firstJobId: Int): ShuffleMapStage = {
        shuffleIdToMapStage.get(shuffleDep.shuffleId) match {
            //如果已经创建了shullfeDependecy对应的shullfeMapStage,则直接返回shullfeMapStage
          case Some(stage) =>
            stage
            //否则调用getMissingAncestorShuffleDependencies找到所有未创建shuffleMapStage的shullfeDependecy
            //并调用createShuffleMapStage创建shullfeMapStage并注册
          case None =>
            getMissingAncestorShuffleDependencies(shuffleDep.rdd).foreach { dep =>
              if (!shuffleIdToMapStage.contains(dep.shuffleId)) {
                createShuffleMapStage(dep, firstJobId)
              }
            }
            // 最后为当前shullfeDependecy创建shullfeMapStage并注册
            createShuffleMapStage(shuffleDep, firstJobId)
        }
      }
    
     private def getMissingAncestorShuffleDependencies(
          rdd: RDD[_]): ArrayStack[ShuffleDependency[_, _, _]] = {
        val ancestors = new ArrayStack[ShuffleDependency[_, _, _]]
        val visited = new HashSet[RDD[_]]
        // We are manually maintaining a stack here to prevent StackOverflowError
        // caused by recursively visiting
        val waitingForVisit = new ArrayStack[RDD[_]]
        waitingForVisit.push(rdd)
        while (waitingForVisit.nonEmpty) {
          val toVisit = waitingForVisit.pop()
          if (!visited(toVisit)) {
            visited += toVisit
            getShuffleDependencies(toVisit).foreach { shuffleDep =>
              if (!shuffleIdToMapStage.contains(shuffleDep.shuffleId)) {
                ancestors.push(shuffleDep)
                waitingForVisit.push(shuffleDep.rdd)
              } // Otherwise, the dependency and its ancestors have already been registered.
            }
          }
        }
        ancestors
      }
    
    def createShuffleMapStage(shuffleDep: ShuffleDependency[_, _, _], jobId: Int): ShuffleMapStage = {
        //获取shuffleDependecy的rdd属性作为将要创建shuffleMapStage的rdd
        val rdd = shuffleDep.rdd
        //rdd初始检查
        checkBarrierStageWithDynamicAllocation(rdd)
        checkBarrierStageWithNumSlots(rdd)
        checkBarrierStageWithRDDChainPattern(rdd, rdd.getNumPartitions)
        //获取rdd的分区数组的长度作为要创建的shullfeMapStage的task的数量
        val numTasks = rdd.partitions.length
        //获取将要创建的shullfeMapStage的所有父stage
        val parents = getOrCreateParentStages(rdd, jobId)
        //生成将要创建的shullfeMapStage的身份标识
        val id = nextStageId.getAndIncrement()
        //创建shullfeMapStage
        val stage = new ShuffleMapStage(
          id, rdd, numTasks, parents, jobId, rdd.creationSite, shuffleDep, mapOutputTracker)
    
        //更新刚创建的shuffleMapStage的映射关系
        stageIdToStage(id) = stage
        shuffleIdToMapStage(shuffleDep.shuffleId) = stage
        updateJobIdStageIdMaps(jobId, stage)
    
        //mapStatus的检查,因为stage可以重试,所以当前stage可能已经执行过,有部分map任务可能执行成功并将mapStatus更新到
        //mapOutputTrackerMaster的缓存,当前stage只要复制这些mapStatus即可,避免重复计算
        if (!mapOutputTracker.containsShuffle(shuffleDep.shuffleId)) {
          // Kind of ugly: need to register RDDs with the cache and map output tracker here
          // since we can't do it in the RDD constructor because # of partitions is unknown
          logInfo("Registering RDD " + rdd.id + " (" + rdd.getCreationSite + ")")
          mapOutputTracker.registerShuffle(shuffleDep.shuffleId, rdd.partitions.length)
        }
        stage
      }
    View Code

     4、提交ResultStage

      submitStage方法会通过入参ResultStage逐层获取父stage,再从最上游stage开始逐步调用TaskScheduler.submitTasks方法提交task集合,最后才提交ResultStage的task集合。

    private def submitStage(stage: Stage) {
        //获取当前stage对应的jobId
        val jobId = activeJobForStage(stage)
        //判断获取到的jobId是否能找到对应的ActiveJob
        if (jobId.isDefined) {
          logDebug("submitStage(" + stage + ")")
          //如果当前stage还未提交
          if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
            //获取当前stage的所有未提交的父stage
            val missing = getMissingParentStages(stage).sortBy(_.id)
            logDebug("missing: " + missing)
            //如果没有未提交的父stage,就提交当前stage中所有未提交的task;否则先提交所有未提交的fustage,并将当前stage加入waitingSrages集合
            if (missing.isEmpty) {
              logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
              submitMissingTasks(stage, jobId.get)
            } else {
              for (parent <- missing) {
                submitStage(parent)
              }
              waitingStages += stage
            }
          }
        } else {  //如果没有找到当前stage对应的ActiveJob,终止依赖于当前stage的所有Job
          abortStage(stage, "No active job for stage " + stage.id, None)
        }
      }
    View Code

      

  • 相关阅读:
    IOC容器特性注入第六篇:利用MVC注入点,把容器启动
    IOC容器特性注入第五篇:查找(Attribute)特性注入
    以女朋友为例讲解 TCP/IP 三次握手与四次挥手
    Kali信息收集
    Python3 异常处理
    Python3 hasattr()、getattr()、setattr()、delattr()函数
    Python3 常用模块
    Python设计模式——外观模式
    Python设计模式——模版方法模式
    一个很神奇的类
  • 原文地址:https://www.cnblogs.com/cnblogs-syui/p/11115380.html
Copyright © 2011-2022 走看看