zoukankan      html  css  js  c++  java
  • golang map 内幕

    关键性数据结构

    • hmap: map 的 header结构
    • bmap: map 的 bucket结构
    • mapextra: map 的 拓展结构 不是每一个map都包含

    golang map 是用 hash map实现的,首先,我们先看 hash map是怎么实现的;然后我们再看 golang map 是怎么基于 hash map 封装的 map 类型。

    Bucket

    // A bucket for a Go map.
    type bmap struct {
    	// tophash generally contains the top byte of the hash value
    	// for each key in this bucket. If tophash[0] < minTopHash,
    	// tophash[0] is a bucket evacuation state instead.
    	tophash [bucketCnt]uint8
    	// Followed by bucketCnt keys and then bucketCnt elems.
    	// NOTE: packing all the keys together and then all the elems together makes the
    	// code a bit more complicated than alternating key/elem/key/elem/... but it allows
    	// us to eliminate padding which would be needed for, e.g., map[int64]int8.
    	// Followed by an overflow pointer.
    }
    

    这里面的 bucketCnt 是一个常量:

    const (
        // Maximum number of key/elem pairs a bucket can hold.
        bucketCntBits = 3
        bucketCnt     = 1 << bucketCntBits
        
        ... ...
    )
    

    这个topHash 就是指hash值的前8位, 每一个桶是大小为 8*8 大小。此外topHash 的元素还可能有以下状态:

    const(
        emptyRest      = 0 // 此位置未被占用,且后面的位置也没被占用
    	emptyOne       = 1 // 此位置未被占用,在delete后会设置此标志
    	evacuatedX     = 2 // 此位置已经被占用,对应数据已经被迁移到新的buckets的first半区
    	evacuatedY     = 3 // 此位置已经被占用,对应数据已经被迁移到新的buckets的second半区
    	evacuatedEmpty = 4 // 此位置未被占用,但bucket已经被迁移
    	minTopHash     = 5 // topHash的最小值,为了与前面4个值进行区分
    )
    

    Hmap

    // A header for a Go map.
    type hmap struct {
    	// Note: the format of the hmap is also encoded in cmd/compile/internal/gc/reflect.go.
    	// Make sure this stays in sync with the compiler's definition.
    	count     int // # live cells == size of map.  Must be first (used by len() builtin)
    	flags     uint8
    	B         uint8  // log_2 of # of buckets (can hold up to loadFactor * 2^B items)
    	noverflow uint16 // overflow buckets 的计数器;详细信息看 incrnoverflow 
    	hash0     uint32 // hash seed
    
    	buckets    unsafe.Pointer // array of 2^B Buckets. may be nil if count==0.
    	oldbuckets unsafe.Pointer // previous bucket array of half the size, non-nil only when growing
    	nevacuate  uintptr        // progress counter for evacuation (buckets less than this have been evacuated), 已迁移的bucket的计数器
    
    	extra *mapextra // optional fields,记录next_overflow的地址,和已经分配的overflow
    }
    
    const (
        // flags
    	iterator     = 1 // there may be an iterator using buckets,有一个iter在使用bucket
    	oldIterator  = 2 // there may be an iterator using oldbuckets,有一个iter在使用old_bucket
    	hashWriting  = 4 // a goroutine is writing to the map,有一个协程在写入
    	sameSizeGrow = 8 // the current map growth is to a new map of the same size,新bucekt与old_bucket size相同.
    )
    
    
    // mapextra holds fields that are not present on all maps.
    type mapextra struct {
    	// If both key and elem do not contain pointers and are inline, then we mark bucket
    	// type as containing no pointers. This avoids scanning such maps.
    	// However, bmap.overflow is a pointer. In order to keep overflow buckets
    	// alive, we store pointers to all overflow buckets in hmap.extra.overflow and hmap.extra.oldoverflow.
    	// overflow and oldoverflow are only used if key and elem do not contain pointers.
    	// overflow contains overflow buckets for hmap.buckets.
    	// oldoverflow contains overflow buckets for hmap.oldbuckets.
    	// The indirection allows to store a pointer to the slice in hiter.
    	overflow    *[]*bmap
    	oldoverflow *[]*bmap
    
    	// nextOverflow holds a pointer to a free overflow bucket.
    	nextOverflow *bmap
    }
    
    

    map解析

    make map

    在golang中可以通过 make(map[key]value, hint) 创建一个map实例,在runtime包中是通过如下函数实现的:

    // makemap implements Go map creation for make(map[k]v, hint).
    // If the compiler has determined that the map or the first bucket
    // can be created on the stack, h and/or bucket may be non-nil.
    // If h != nil, the map can be created directly in h.
    // If h.buckets != nil, bucket pointed to can be used as the first bucket.
    func makemap(t *maptype, hint int, h *hmap) *hmap {
        mem, overflow := math.MulUintptr(uintptr(hint), t.bucket.size)
    	if overflow || mem > maxAlloc {
    		hint = 0
    	}
    
    	// 1. 初始化hmap
    	if h == nil {
    		h = new(hmap)
    	}
    	h.hash0 = fastrand() // 取一个随机值作为hash seed
    
    	// Find the size parameter B which will hold the requested # of elements.
    	// For hint < 0 overLoadFactor returns false since hint < bucketCnt.
    	B := uint8(0)
    	for overLoadFactor(hint, B) {
    		B++
    	}
    	h.B = B
        
        // allocate initial hash table
    	// if B == 0, the buckets field is allocated lazily later (in mapassign)
    	// If hint is large zeroing this memory could take a while.
    	// 分配空间
    	if h.B != 0 {
    		var nextOverflow *bmap
    		h.buckets, nextOverflow = makeBucketArray(t, h.B, nil)
    		if nextOverflow != nil {
    			h.extra = new(mapextra)
    			h.extra.nextOverflow = nextOverflow // 保存overflow区域的首地址
    		}
    	}
    	
    }
    
    
    // makeBucketArray initializes a backing array for map buckets.
    // 1<<b is the minimum number of buckets to allocate.
    // dirtyalloc should either be nil or a bucket array previously
    // allocated by makeBucketArray with the same t and b parameters.
    // If dirtyalloc is nil a new backing array will be alloced and
    // otherwise dirtyalloc will be cleared and reused as backing array.
    func makeBucketArray(t *maptype, b uint8, dirtyalloc unsafe.Pointer) (buckets unsafe.Pointer, nextOverflow *bmap) {
        // 1. 计算要使用的空间大小
    	base := bucketShift(b)  // base = 2^(b'), b' 32位系统时为b的低5位,最大值为31,64系统时为b的低6位,最大值为63
    	nbuckets := base
    	// For small b, overflow buckets are unlikely.
    	// Avoid the overhead of the calculation.
    	// 预分配内存
    	if b >= 4 {
    		// Add on the estimated number of overflow buckets
    		// required to insert the median number of elements
    		// used with this value of b.
    		nbuckets += bucketShift(b - 4) // nbuckets = base + 2^((b-4)') 
    		sz := t.bucket.size * nbuckets
    		up := roundupsize(sz) // 内存页对齐,golang 中pagesize 为8kB
    		if up != sz {
    			nbuckets = up / t.bucket.size
    		}
    	}
        
        // 2. 空间重复利用
    	if dirtyalloc == nil { 
    	    // 没有脏空间,则新分配一个数组
    		buckets = newarray(t.bucket, int(nbuckets))
    	} else {
    		// dirtyalloc was previously generated by
    		// the above newarray(t.bucket, int(nbuckets))
    		// but may not be empty.
    		buckets = dirtyalloc
    		size := t.bucket.size * nbuckets
    		if t.bucket.ptrdata != 0 {
    			memclrHasPointers(buckets, size)
    		} else {
    			memclrNoHeapPointers(buckets, size)
    		}
    	}
        
        // 3. 计算overflow 指针
    	if base != nbuckets {
    		// We preallocated some overflow buckets.
    		// To keep the overhead of tracking these overflow buckets to a minimum,
    		// we use the convention that if a preallocated overflow bucket's overflow
    		// pointer is nil, then there are more available by bumping the pointer.
    		// We need a safe non-nil pointer for the last overflow bucket; just use buckets.
    		nextOverflow = (*bmap)(add(buckets, base*uintptr(t.bucketsize)))
    		last := (*bmap)(add(buckets, (nbuckets-1)*uintptr(t.bucketsize)))
    		last.setoverflow(t, (*bmap)(buckets)) // 将overflow最后一个bucket的末尾位置存储 buckets指针
    	}
    	return buckets, nextOverflow
    }
    
    // overLoadFactor reports whether count items placed in 1<<B buckets is over loadFactor.
    // 检查当前数量是不是超过负载系数
    func overLoadFactor(count int, B uint8) bool {
    	return count > bucketCnt && uintptr(count) > loadFactorNum*(bucketShift(B)/loadFactorDen)
    }
    

    返回值类型是 hmap*, hmap.B 要符合以下规则

        loadFactorNum = 13
        loadFactorDen = 2
        count = hint
        uintptr(count) > loadFactorNum*(bucketShift(B)/loadFactorDen)
    

    hmap.buckets 分配的内存: roudupsize(base=bucketsize*2^B + overflow=bucketsize*/2^B/4),bucketsize = bitmap_size + 8*(key_size) + 8*(elem_size) + ptr_size,在32和64位系统中ptr_size不同,所以bucket_size会也不同。
    从上面的代码可以看出,在物理内存中是以一个数组来存储hmap table,内存分布大致如下:

    # bucket
    |bmap|key1~8|elem1~8|
    
    #bucekts
    |bucket1~N|overflow|
    
    # overflow
    |nextOverflow|...|last|
    
    # last
    |bmap|...|ptr_buckets|
    

    bucket1~N 是base区域, overflow 是预留区域,降低内存重复分配的次数。

    insert into map

    // Like mapaccess, but allocates a slot for the key if it is not present in the map.
    func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
        ... ...
        // 1. 生成key的hash
        alg := t.key.alg
    	hash := alg.hash(key, uintptr(h.hash0))
    	
    	if h.buckets == nil {
    		h.buckets = newobject(t.bucket) // newarray(t.bucket, 1)
    	}
    
    again:
        // 2. 分桶
        // 取出hash的低 B 位,作为 bucket的编号
    	bucket := hash & bucketMask(h.B)
    	if h.growing() {
    		growWork(t, h, bucket)
    	}
    	
    	// 找到桶对应的数组首地址
    	b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize)))
    	// hash 的高 8 位, 如果小于5 则 +5 返回
    	top := tophash(hash)
    
    	var inserti *uint8 // bmap中写入 tophash 的地址
    	var insertk unsafe.Pointer // 写入key的地址
    	var elem unsafe.Pointer // 写入值的地址
    bucketloop:
    	for {
    		for i := uintptr(0); i < bucketCnt; i++ { // 查找可使用的位置
    			if b.tophash[i] != top {
    				if isEmpty(b.tophash[i]) && inserti == nil {
    					inserti = &b.tophash[i]
    					insertk = add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
    					elem = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
    				}
    				if b.tophash[i] == emptyRest {  // 找到可使用的位置,跳出循环
    					break bucketloop
    				}
    				continue
    			}
    			// 找到相同topHash,比较key
    			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
    			if t.indirectkey() {
    				k = *((*unsafe.Pointer)(k))
    			}
    			if !alg.equal(key, k) { // key不相同继续查找
    				continue
    			}
    			// already have a mapping for key. Update it.
    			// key相同,找到elem位置,跳转到done
    			if t.needkeyupdate() {
    				typedmemmove(t.key, k, key) 
    			}
    			elem = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
    			goto done
    		}
    		
    		// 在N bucket 中没有找到,查找overflow
    		ovf := b.overflow(t)
    		if ovf == nil {
    			break // overflow 为空跳出循环
    		}
    		b = ovf
    	}
    
    	// Did not find mapping for key. Allocate new cell & add entry.
    
    	// If we hit the max load factor or we have too many overflow buckets,
    	// and we're not already in the middle of growing, start growing.
    	// 是否触发内存增长
    	if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
    		hashGrow(t, h)
    		goto again // Growing the table invalidates everything, so try again
    	}
    
    	if inserti == nil { // 没有找到可以插入的位置,新分配一个overflow
    		// all current buckets are full, allocate a new one.
    		newb := h.newoverflow(t, b)
    		inserti = &newb.tophash[0]
    		insertk = add(unsafe.Pointer(newb), dataOffset)
    		elem = add(insertk, bucketCnt*uintptr(t.keysize))
    	}
    
    	// store new key/elem at insert position
    	if t.indirectkey() {
    		kmem := newobject(t.key)
    		*(*unsafe.Pointer)(insertk) = kmem
    		insertk = kmem
    	}
    	if t.indirectelem() {
    		vmem := newobject(t.elem)
    		*(*unsafe.Pointer)(elem) = vmem
    	}
    	typedmemmove(t.key, insertk, key)
    	*inserti = top
    	h.count++
    
    done:
    	if h.flags&hashWriting == 0 {
    		throw("concurrent map writes")
    	}
    	h.flags &^= hashWriting
    	if t.indirectelem() {
    		elem = *((*unsafe.Pointer)(elem))
    	}
    	return elem	
    	
    }
    

    从上面代码解析我们能清楚一个写入的过程:

    1. 对key做hash,取hash的低B位,确定bucket的编号 N;
    2. 遍历 N bucket中每一个 位置 ,找到没有写入的 位置,写入topHash即hash的高8位;
    3. 如果 N bucket 中有相同的 topHash,则需要去出对应的key做比较,如果相同则修改elem,如果不同则继续向后遍历,寻找空闲的 位置 写入,以此来解决冲突的问题。

    那如果出现N bucket 满了怎么办?虽然这种概率很低但是也难免会遇到,毕竟一个bmap中只能装的下8个key,这里就要用到我们刚才说的预分配内存 overflow,分配overflow的逻辑如下:

    func (h *hmap) newoverflow(t *maptype, b *bmap) *bmap {
    	var ovf *bmap
    	if h.extra != nil && h.extra.nextOverflow != nil { // 存在overflow区域
    		// We have preallocated overflow buckets available.
    		// See makeBucketArray for more details.
    		ovf = h.extra.nextOverflow
    		if ovf.overflow(t) == nil { // ovf不是最后一块,将nextOverflow 指针向后移动
    			// We're not at the end of the preallocated overflow buckets. Bump the pointer.
    			h.extra.nextOverflow = (*bmap)(add(unsafe.Pointer(ovf), uintptr(t.bucketsize)))
    		} else { // 最后一块 overflow,将nextOverflow 置空
    			// This is the last preallocated overflow bucket.
    			// Reset the overflow pointer on this bucket,
    			// which was set to a non-nil sentinel value.
    			ovf.setoverflow(t, nil) // 抹平末尾指针
    			h.extra.nextOverflow = nil
    		}
    	} else {// overflow 用光,新建一块
    		ovf = (*bmap)(newobject(t.bucket)) 
    	}
    	h.incrnoverflow() // 增加overflow 使用计数
    	if t.bucket.ptrdata == 0 {
    		h.createOverflow()
    		*h.extra.overflow = append(*h.extra.overflow, ovf)
    	}
    	b.setoverflow(t, ovf) // 将overflow的地址加到末尾
    	return ovf
    }
    

    通过上面的函数我们可以明白,当N bucket被用光后如何扩充,即从预留区域查找一块未使用的区域,将该区域的指针放在 N bucket 的末尾,作为 N bucket的扩充区域:

    # N bucket 扩充
    |bmap|key1~8|elem1~8|ptr_extra_bucket|......|extra_bucket|
                                ^---------------^
    

    然后我们就可以愉快的将新的key-value放到extra_bucket 中,我们在结合上面一节的内容可以更加清晰的明白hashmap table在内存里的构造,即连续数组+跳转指针,这也是为什么访问能如此快速的原因,基本上都是在连续内存上指针位移操作。

    看到这里我们对map的实现应该有一个粗浅的认识,但是这只是一部分。我们可以注意到hmap中还有一个oldbuckets,还有其他的成员变量的含义没有被解开。

    在上面的段落中我们给出了bucket溢出的解决方案,但如果bucket溢出过多怎么办(即单桶数据过多)??我们可以假设一个极端情况 一个map中除了 bucket1,剩余的都是它的extra_bucket,当我在 bucket1中取查询的时候要遍历很长,最差的情况要遍历整个map。怎样去解决这个问题?

    • 对key进行排序,使key变成有序的。可以使用插入排序,实现简单但是内存位移的操作较多。使用二分查找时间复杂度可以优化到log(n)。当然也可以使用其它排序算法,来减少内存位移发生的几率,但是因为底层存储是使用的数组,内存位移难以避免。
    • 重建,通过重新划分桶,来解决单桶数据过多问题。

    上面代码中不难展示出在golang中使用的是第二种方案,那么什么情况下会触发重建?如何重建?

    map Grow

    tooManyOverflowBucketsoverLoadFactor 这两个函数会去判断是否需要执行 Grow 流程:

    func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
        ... ...
        // Did not find mapping for key. Allocate new cell & add entry.
    
    	// If we hit the max load factor or we have too many overflow buckets,
    	// and we're not already in the middle of growing, start growing.
    	if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
    		hashGrow(t, h)
    		goto again // Growing the table invalidates everything, so try again
    	}
    	... ...
    }
    
    const(
        loadFactorNum = 13
        loadFactorDen = 2
    )
    
    // overLoadFactor reports whether count items placed in 1<<B buckets is over loadFactor.
    func overLoadFactor(count int, B uint8) bool {
    	return count > bucketCnt && uintptr(count) > loadFactorNum*(bucketShift(B)/loadFactorDen)
    }
    
    // tooManyOverflowBuckets reports whether noverflow buckets is too many for a map with 1<<B buckets.
    // Note that most of these overflow buckets must be in sparse use;
    // if use was dense, then we'd have already triggered regular map growth.
    func tooManyOverflowBuckets(noverflow uint16, B uint8) bool {
    	// If the threshold is too low, we do extraneous work.
    	// If the threshold is too high, maps that grow and shrink can hold on to lots of unused memory.
    	// "too many" means (approximately) as many overflow buckets as regular buckets.
    	// See incrnoverflow for more details.
    	if B > 15 {
    		B = 15
    	}
    	// The compiler doesn't see here that B < 16; mask B to generate shorter shift code.
    	return noverflow >= uint16(1)<<(B&15)
    }
    

    首先是overLoadFactor,当 key_count + 1 > 8 and key_count+1 > 13*2^(B-1) 时会触发 Grow 流程。其次是 tooManyOverflowBuckets,当noverflow >= 2^(B&15),也就是说overflow bucket的数量大于2^(B&15)就会触发Grow,这里分两种情况:

    1. B < 16,此时当overflow bucketbase bucket 相等的时候就会触发增长流程。
    2. B >= 16 时,此时当overflow bucket数量 > 2^15时就会触发增长流程。

    这里需要注意的是,noverflow 并不是一个准确的计数,当数量过大的时候它只能显示一个近似的数量:

    // incrnoverflow increments h.noverflow.
    // noverflow counts the number of overflow buckets.
    // This is used to trigger same-size map growth.
    // See also tooManyOverflowBuckets.
    // To keep hmap small, noverflow is a uint16.
    // When there are few buckets, noverflow is an exact count.
    // When there are many buckets, noverflow is an approximate count.
    func (h *hmap) incrnoverflow() {
    	// We trigger same-size map growth if there are
    	// as many overflow buckets as buckets.
    	// We need to be able to count to 1<<h.B.
    	if h.B < 16 {
    		h.noverflow++
    		return
    	}
    	// Increment with probability 1/(1<<(h.B-15)).
    	// When we reach 1<<15 - 1, we will have approximately
    	// as many overflow buckets as buckets.
    	mask := uint32(1)<<(h.B-15) - 1
    	// Example: if h.B == 18, then mask == 7,
    	// and fastrand & 7 == 0 with probability 1/8.
    	if fastrand()&mask == 0 {
    		h.noverflow++
    	}
    }
    

    可以很明显的看出,当h.B>=16时候并不是每次都会累加,此时base bucket的数量至少为2^16,可以存储2^19=524288条数据,外加预分配的overflow 。桶的数量越多,分布的越离散,出现overflow的概率更低,即使出现overflow单桶过长的概率也会降低。

    func hashGrow(t *maptype, h *hmap) {
    	// If we've hit the load factor, get bigger.
    	// Otherwise, there are too many overflow buckets,
    	// so keep the same number of buckets and "grow" laterally.
    	bigger := uint8(1)
    	// 判断是否超出loadFactor
    	if !overLoadFactor(h.count+1, h.B) { // 没有超过则维持以前的size
    		bigger = 0
    		h.flags |= sameSizeGrow
    	}
    	oldbuckets := h.buckets
    	newbuckets, nextOverflow := makeBucketArray(t, h.B+bigger, nil)
        
        // 更新flags
    	flags := h.flags &^ (iterator | oldIterator)
    	if h.flags&iterator != 0 {
    		flags |= oldIterator
    	}
    	// commit the grow (atomic wrt gc)
    	h.B += bigger
    	h.flags = flags
    	// 替换buckets
    	h.oldbuckets = oldbuckets
    	h.buckets = newbuckets
    	h.nevacuate = 0
    	h.noverflow = 0
    
    	if h.extra != nil && h.extra.overflow != nil {
    		// Promote current overflow buckets to the old generation.
    		if h.extra.oldoverflow != nil {
    			throw("oldoverflow is not nil")
    		}
    		h.extra.oldoverflow = h.extra.overflow
    		h.extra.overflow = nil
    	}
    	if nextOverflow != nil {
    		if h.extra == nil {
    			h.extra = new(mapextra)
    		}
    		h.extra.nextOverflow = nextOverflow
    	}
    
    	// the actual copying of the hash table data is done incrementally
    	// by growWork() and evacuate().
    }
    

    根据上面的hashGrow 函数,我们可以看出map内存增长的规则,在overLoadFactor的情况下,h.B = h.B + 1,即base bucket数量翻倍, 否则维持原size不变,创建一个新的 buckets数组。

    func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer{
        ... ...
        bucket := hash & bucketMask(h.B)
        if h.growing() {
    		growWork(t, h, bucket)
    	}
    	... ...
    }
    
    
    func growWork(t *maptype, h *hmap, bucket uintptr) {
    	// make sure we evacuate the oldbucket corresponding
    	// to the bucket we're about to use
    	
    	evacuate(t, h, bucket&h.oldbucketmask())
    
    	// evacuate one more oldbucket to make progress on growing
    	if h.growing() {
    		evacuate(t, h, h.nevacuate)
    	}
    }
    
    // 迁移数据
    func evacuate(t *maptype, h *hmap, oldbucket uintptr) {
    	b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
    	newbit := h.noldbuckets() //oldbuckets 的 size
    	if !evacuated(b) {
    		// TODO: reuse overflow buckets instead of using new ones, if there
    		// is no iterator using the old buckets.  (If !oldIterator.)
    
    		// xy contains the x and y (low and high) evacuation destinations.
    		// 1. 确定两个潜在目的迁移地址,X/Y
    		// X 地址为 new buckets中编号为 oldbucket 的bucket
    		var xy [2]evacDst
    		x := &xy[0]
    		x.b = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize)))
    		x.k = add(unsafe.Pointer(x.b), dataOffset)
    		x.e = add(x.k, bucketCnt*uintptr(t.keysize))
            
    		if !h.sameSizeGrow() { // size 不变的情况下
    			// Only calculate y pointers if we're growing bigger.
    			// Otherwise GC can see bad pointers.
    			// Y 地址为 new buckets中编号为 oldbucket + noldbuckets, 即second 半区
    			y := &xy[1]
    			y.b = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize)))
    			y.k = add(unsafe.Pointer(y.b), dataOffset)
    			y.e = add(y.k, bucketCnt*uintptr(t.keysize))
    		}
            
            // 2. 开始迁移数据,包括bucket overflow部分的数据
    		for ; b != nil; b = b.overflow(t) {
    			k := add(unsafe.Pointer(b), dataOffset)
    			e := add(k, bucketCnt*uintptr(t.keysize))
    			for i := 0; i < bucketCnt; i, k, e = i+1, add(k, uintptr(t.keysize)), add(e, uintptr(t.elemsize)) {
    				top := b.tophash[i]
    				if isEmpty(top) {
    					b.tophash[i] = evacuatedEmpty
    					continue
    				}
    				if top < minTopHash {
    					throw("bad map state")
    				}
    				k2 := k
    				if t.indirectkey() {
    					k2 = *((*unsafe.Pointer)(k2))
    				}
    				var useY uint8
    				 // 计算迁移到first 半区还是 second半区
    				if !h.sameSizeGrow() {
    					// Compute hash to make our evacuation decision (whether we need
    					// to send this key/elem to bucket x or bucket y).
    					hash := t.key.alg.hash(k2, uintptr(h.hash0))
    					if h.flags&iterator != 0 && !t.reflexivekey() && !t.key.alg.equal(k2, k2) {
    						// If key != key (NaNs), then the hash could be (and probably
    						// will be) entirely different from the old hash. Moreover,
    						// it isn't reproducible. Reproducibility is required in the
    						// presence of iterators, as our evacuation decision must
    						// match whatever decision the iterator made.
    						// Fortunately, we have the freedom to send these keys either
    						// way. Also, tophash is meaningless for these kinds of keys.
    						// We let the low bit of tophash drive the evacuation decision.
    						// We recompute a new random tophash for the next level so
    						// these keys will get evenly distributed across all buckets
    						// after multiple grows.
    						useY = top & 1
    						top = tophash(hash)
    					} else {
    						if hash&newbit != 0 {
    							useY = 1
    						}
    					}
    				}
    
    				if evacuatedX+1 != evacuatedY || evacuatedX^1 != evacuatedY {
    					throw("bad evacuatedN")
    				}
                    // 修改topHash 为 evacuatedX 或 evacuatedY, 表示已经被迁移
    				b.tophash[i] = evacuatedX + useY // evacuatedX + 1 == evacuatedY
    				dst := &xy[useY]                 // evacuation destination
                    // 迁移数据
    				if dst.i == bucketCnt {
    					dst.b = h.newoverflow(t, dst.b)
    					dst.i = 0
    					dst.k = add(unsafe.Pointer(dst.b), dataOffset)
    					dst.e = add(dst.k, bucketCnt*uintptr(t.keysize))
    				}
    				dst.b.tophash[dst.i&(bucketCnt-1)] = top // mask dst.i as an optimization, to avoid a bounds check
    				if t.indirectkey() {
    					*(*unsafe.Pointer)(dst.k) = k2 // copy pointer
    				} else {
    					typedmemmove(t.key, dst.k, k) // copy elem
    				}
    				if t.indirectelem() {
    					*(*unsafe.Pointer)(dst.e) = *(*unsafe.Pointer)(e)
    				} else {
    					typedmemmove(t.elem, dst.e, e)
    				}
    				dst.i++
    				// These updates might push these pointers past the end of the
    				// key or elem arrays.  That's ok, as we have the overflow pointer
    				// at the end of the bucket to protect against pointing past the
    				// end of the bucket.
    				dst.k = add(dst.k, uintptr(t.keysize))
    				dst.e = add(dst.e, uintptr(t.elemsize))
    			}
    		}
    		// Unlink the overflow buckets & clear key/elem to help GC.
    		// 清理数据
    		if h.flags&oldIterator == 0 && t.bucket.ptrdata != 0 {
    			b := add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))
    			// Preserve b.tophash because the evacuation
    			// state is maintained there.
    			ptr := add(b, dataOffset)
    			n := uintptr(t.bucketsize) - dataOffset
    			memclrHasPointers(ptr, n)
    		}
    	}
        
    	if oldbucket == h.nevacuate {
    	    // 统计是否完全迁移,如果完全迁移后,oldbuckets 会被释放掉(设置为nil)
    		advanceEvacuationMark(h, t, newbit)
    	}
    }
    

    上面我们提到了在Grow的流程中,新申请的buckets 可能会大小不变即same_size,也可能会变成oldbuckets的两倍即double_size,当double_size的情况下,会划分为两个半区firstsecond

    # oldbuckets
    |bucket1~N|
    
    # newbuckets
    |bucket1~N|bucketN+1~2N|
      first        second
    

    我们以dobule_size为例,当插入一个新的key触发Grow操作的时候,整体的执行流程如下:

    1. 取hash(key)的低 B 位作为bucket编号 N, bucket_i = bucket_N;判断当前是否处于增长状态,如果不处于Grow_State,执行下一步;否则跳转到第 6 步;
    2. 如果bucket_i中可以找到插入的位置,则插入结束流程;否则执行下一步;
    3. 查找bucket_i 是否分配了overflow bucket,如果有分配overflow bucket,则 bucketi = overflwo_bucket,跳转到第2步;否则执行下一步;
    4. 判断是否需要执行Grow流程,如果需要则执行下一步;否则执行第 7 步;
    5. 创建新的 buckets并扩充到dobule_size,设置为Grow_State,跳转到第 1 步;
    6. oldbucketoldbuckets迁移到newbucketsoldbucket = N^(2^B-1),odlbucket中的数据会分布到firstsecond两个半区中(下面会详细说明),跳转到第2步执行;
    7. bucket_i分配的oveflow_bucketr,插入key,结束流程;

    此处对第6步进行一下详细描述,我们假设 N = 12, B = 3,触发增长后B = 4, X = N^(2^B - 1) = 4, Y = X + 2^(B-1) = 12,新的key会被插到second半区;如果N = 4则会被插入到first半区,但无论如何都是在oldbucket迁移过来的数据桶中,以此来保证hash的一致性,这就是重构hash map的过程。

    same_size的情况下执行过程是一样的,因为bucket总数不变,所以oldbucket对应迁移到new_buckets中相同编号的bucket中即可。

    同时有一个细节值得我们注意,在bmap中被设置为emptyone的表示是已经被删除的数据,在迁移的过程中跳过即可,这样迁移后的数据会变的更加紧凑。

    # 迁移前
    # oldbucket_4
    # emptyreset = 0, emptyone = 1
    |xx|yy|1|ww|zz|0|0|0|key1~8|elem1~8|
    
    # 迁移后
    # newbucket
    # newbucket_4
    |xx|ww|0|0|0|0|0|0|key_xx|key_ww|...|elem_xx|elme_ww|...|
    
    # newbucket_12
    |yy|zz|0|0|0|0|0|0|key_yy|key_zz|...|elem_yy|elme_zz|...|
    
    # oldbucket_4
    # evacuatedX = 2, evacuatedY = 3, evacuatedEmpty = 4
    |2|3|1|2|3|4|4|4|key1~8|elem1~8|
    

    map access

    golang map中访问一个map中数据有三种方式,我们以map[int]int为例:

        sets := map[int]int{1:2,3:4,5:6}
        value := map[1] // 返回值
        value, isExist := map[i] // 返回值和是否存在
        for key, value := range sets{ // 遍历
        }
    

    前两种访问方式相同,都是通过key来访问,只是返回的值有所不同而已。

    
    func mapaccess2(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, bool) {
    	if raceenabled && h != nil {
    		callerpc := getcallerpc()
    		pc := funcPC(mapaccess2)
    		racereadpc(unsafe.Pointer(h), callerpc, pc)
    		raceReadObjectPC(t.key, key, callerpc, pc)
    	}
    	if msanenabled && h != nil {
    		msanread(key, t.key.size)
    	}
    	if h == nil || h.count == 0 {
    		if t.hashMightPanic() {
    			t.key.alg.hash(key, 0) // see issue 23734
    		}
    		return unsafe.Pointer(&zeroVal[0]), false
    	}
    	if h.flags&hashWriting != 0 {
    		throw("concurrent map read and map write")
    	}
    	
    	// 1. 计算对应的桶编号,获取桶地址
    	alg := t.key.alg
    	hash := alg.hash(key, uintptr(h.hash0))
    	m := bucketMask(h.B)
    	b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + (hash&m)*uintptr(t.bucketsize))) // 取hash值的低B位为桶编号
    	if c := h.oldbuckets; c != nil { // 当存在旧桶的时候,数据可能尚未迁移
    		if !h.sameSizeGrow() { // 当扩充桶为double_size时, 桶编号要取 hash 值的低 B-1 位
    			// There used to be half as many buckets; mask down one more power of two.
    			m >>= 1
    		}
    		
    		oldb := (*bmap)(unsafe.Pointer(uintptr(c) + (hash&m)*uintptr(t.bucketsize)))
    		if !evacuated(oldb) { // 如果没有迁移则去老的桶取
    			b = oldb
    		}
    	}
    	top := tophash(hash)
    bucketloop:
        // 2. 遍历寻找对应的key
    	for ; b != nil; b = b.overflow(t) {
    		for i := uintptr(0); i < bucketCnt; i++ {
    			if b.tophash[i] != top {
    				if b.tophash[i] == emptyRest {
    					break bucketloop
    				}
    				continue
    			}
    			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
    			if t.indirectkey() {
    				k = *((*unsafe.Pointer)(k))
    			}
    			if alg.equal(key, k) {
    				e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
    				if t.indirectelem() {
    					e = *((*unsafe.Pointer)(e))
    				}
    				return e, true
    			}
    		}
    	}
    	return unsafe.Pointer(&zeroVal[0]), false
    }
    

    整个查询过程比较简单,如果你是顺序阅读到这里的话应该很好理解:

    1. 取低key_hash的低B位计算桶的编号N,bucket_i = bucket_N,如果此时有旧桶存在,执行第2步,否则执行第 4 步;
    2. 寻找oldbucket,判断Grow 类型,如果是same_size则编号编号仍然为N,如果是dobule_size则取key_hash低B-1位作为旧桶编号;执行下一步;
    3. 判断odlbucket是否被迁移,如果没被迁移则 bucket_i = old_bucket;执行下一步;
    4. bucket_ioverflow_bucket中寻找与key_topHash相等的tophash,找到后取对应的keyequal 比对,如果相等则返回 对应的elem,否则继续遍历,到结束为止。

    相比较于按照key访问,遍历访问要更复杂一些:

    
    // mapiterinit initializes the hiter struct used for ranging over maps.
    // The hiter struct pointed to by 'it' is allocated on the stack
    // by the compilers order pass or on the heap by reflect_mapiterinit.
    // Both need to have zeroed hiter since the struct contains pointers.
    func mapiterinit(t *maptype, h *hmap, it *hiter) {
    	if raceenabled && h != nil {
    		callerpc := getcallerpc()
    		racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapiterinit))
    	}
    
    	if h == nil || h.count == 0 {
    		return
    	}
    
    	if unsafe.Sizeof(hiter{})/sys.PtrSize != 12 {
    		throw("hash_iter size incorrect") // see cmd/compile/internal/gc/reflect.go
    	}
    	it.t = t
    	it.h = h
    
    	// grab snapshot of bucket state
    	// 1. 创建当前map状态快照
    	it.B = h.B
    	it.buckets = h.buckets
    	if t.bucket.ptrdata == 0 {
    		// Allocate the current slice and remember pointers to both current and old.
    		// This preserves all relevant overflow buckets alive even if
    		// the table grows and/or overflow buckets are added to the table
    		// while we are iterating.
    		h.createOverflow()
    		it.overflow = h.extra.overflow
    		it.oldoverflow = h.extra.oldoverflow
    	}
    
    	// decide where to start
    	// 2. 决定起始位置
    	// 取一个随机值
    	r := uintptr(fastrand())
    	if h.B > 31-bucketCntBits {
    		r += uintptr(fastrand()) << 31
    	}
    	// 选取一个随机的起始bucket
    	it.startBucket = r & bucketMask(h.B)
    	// 选取一个随机的偏移量
    	it.offset = uint8(r >> h.B & (bucketCnt - 1))
    
    	// iterator state
    	it.bucket = it.startBucket
    
    	// Remember we have an iterator.
    	// Can run concurrently with another mapiterinit().
    	// 写入标志位
    	if old := h.flags; old&(iterator|oldIterator) != iterator|oldIterator {
    		atomic.Or8(&h.flags, iterator|oldIterator)
    	}
    
    	mapiternext(it)
    }
    
    
    func mapiternext(it *hiter) {
    	h := it.h
    	if raceenabled {
    		callerpc := getcallerpc()
    		racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapiternext))
    	}
    	if h.flags&hashWriting != 0 {
    		throw("concurrent map iteration and map write")
    	}
    	t := it.t
    	bucket := it.bucket
    	b := it.bptr
    	i := it.i
    	checkBucket := it.checkBucket
    	alg := t.key.alg
    
    next:
    	if b == nil {
    	    // 判断是否已经循环遍历所有的Bucket
    		if bucket == it.startBucket && it.wrapped {
    			// end of iteration
    			it.key = nil
    			it.elem = nil
    			return
    		}
    		
    		if h.growing() && it.B == h.B {
    		    //map 在grow state 且 iterInit在grow state 或者是 `same_size`
    			// Iterator was started in the middle of a grow, and the grow isn't done yet.
    			// If the bucket we're looking at hasn't been filled in yet (i.e. the old
    			// bucket hasn't been evacuated) then we need to iterate through the old
    			// bucket and only return the ones that will be migrated to this bucket.
    			oldbucket := bucket & it.h.oldbucketmask()
    			b = (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
    			if !evacuated(b) { // 判断是否迁移
    				checkBucket = bucket
    			} else {
    				b = (*bmap)(add(it.buckets, bucket*uintptr(t.bucketsize)))
    				checkBucket = noCheck
    			}
    		} else {
    		    // map未处于`grow state`,或`grow state`为`doubel_size`.
    			b = (*bmap)(add(it.buckets, bucket*uintptr(t.bucketsize)))
    			checkBucket = noCheck
    		}
    		bucket++
    		if bucket == bucketShift(it.B) {
    			bucket = 0
    			it.wrapped = true
    		}
    		i = 0
    	}
    	for ; i < bucketCnt; i++ {
    		offi := (i + it.offset) & (bucketCnt - 1)
    		// 跳过空闲位置
    		if isEmpty(b.tophash[offi]) || b.tophash[offi] == evacuatedEmpty {
    			// TODO: emptyRest is hard to use here, as we start iterating
    			// in the middle of a bucket. It's feasible, just tricky.
    			continue
    		}
    		k := add(unsafe.Pointer(b), dataOffset+uintptr(offi)*uintptr(t.keysize))
    		if t.indirectkey() {
    			k = *((*unsafe.Pointer)(k))
    		}
    		e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+uintptr(offi)*uintptr(t.elemsize))
    		
    		if checkBucket != noCheck && !h.sameSizeGrow() {// 过滤不会被迁移过来的数据
    			// Special case: iterator was started during a grow to a larger size
    			// and the grow is not done yet. We're working on a bucket whose
    			// oldbucket has not been evacuated yet. Or at least, it wasn't
    			// evacuated when we started the bucket. So we're iterating
    			// through the oldbucket, skipping any keys that will go
    			// to the other new bucket (each oldbucket expands to two
    			// buckets during a grow).
    			if t.reflexivekey() || alg.equal(k, k) {
    				// If the item in the oldbucket is not destined for
    				// the current new bucket in the iteration, skip it.
    				hash := alg.hash(k, uintptr(h.hash0))
    				if hash&bucketMask(it.B) != checkBucket {
    					continue
    				}
    			} else {
    				// Hash isn't repeatable if k != k (NaNs).  We need a
    				// repeatable and randomish choice of which direction
    				// to send NaNs during evacuation. We'll use the low
    				// bit of tophash to decide which way NaNs go.
    				// NOTE: this case is why we need two evacuate tophash
    				// values, evacuatedX and evacuatedY, that differ in
    				// their low bit.
    				if checkBucket>>(it.B-1) != uintptr(b.tophash[offi]&1) {
    					continue
    				}
    			}
    		}
    		if (b.tophash[offi] != evacuatedX && b.tophash[offi] != evacuatedY) ||
    			!(t.reflexivekey() || alg.equal(k, k)) {// 数据没有迁移,直接访问
    			// This is the golden data, we can return it.
    			// OR
    			// key!=key, so the entry can't be deleted or updated, so we can just return it.
    			// That's lucky for us because when key!=key we can't look it up successfully.
    			it.key = k
    			if t.indirectelem() {
    				e = *((*unsafe.Pointer)(e))
    			}
    			it.elem = e
    		} else { // 数据已经迁移,通过key定位访问
    			// The hash table has grown since the iterator was started.
    			// The golden data for this key is now somewhere else.
    			// Check the current hash table for the data.
    			// This code handles the case where the key
    			// has been deleted, updated, or deleted and reinserted.
    			// NOTE: we need to regrab the key as it has potentially been
    			// updated to an equal() but not identical key (e.g. +0.0 vs -0.0).
    			rk, re := mapaccessK(t, h, k)
    			if rk == nil {
    				continue // key has been deleted
    			}
    			it.key = rk
    			it.elem = re
    		}
    		it.bucket = bucket
    		if it.bptr != b { // avoid unnecessary write barrier; see issue 14921
    			it.bptr = b
    		}
    		it.i = i + 1
    		it.checkBucket = checkBucket
    		return
    	}
    	b = b.overflow(t) // 继续遍历overflow bucket
    	i = 0
    	goto next
    }
    

    当我们去遍历一个map的时候可能有三种情况:

    1. iterInititerNext期间未发生Grow: 只要顺序遍历it.buckets数据即可;
    2. iterInititerNext 都发生在Grow state: 上述代码可以清晰看出iterInit 时候是对 h.bucketsh.B 做了 snapshot,此时iterNext是以 newBucket作为基础去遍历的,那么一个bucket_N可能有两个状态:已经迁移和尚未迁移。已经迁移的直接遍历桶即可,未迁移的则需要去oldbucket中遍历,不过需要注意的一点是,要过滤掉那些不可能被迁移到bucket_N的数据(在double_size情况下分上下半区);
    3. iterInitGrow state 之前,iterNextGrow State:此种情况更加复杂一些,因为iterInit是在Grow之前,iterNext的时候it.buckets实际对应的是h.oldbucket,也就是说是基于oldbuckets去遍历,此时bucket_N也有两种情况:已经迁移和没有迁移,没有迁移的直接取数据返回,已经迁移的则直接通过key访问,因为此时可能在新bucekt中已经被更新或者删除了。

    map delete

    上面我们也提到过,map的移除是通过修改topHashemptyOne完成,删除逻辑要比插入逻辑简单很多:

    func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
    	if raceenabled && h != nil {
    		callerpc := getcallerpc()
    		pc := funcPC(mapdelete)
    		racewritepc(unsafe.Pointer(h), callerpc, pc)
    		raceReadObjectPC(t.key, key, callerpc, pc)
    	}
    	if msanenabled && h != nil {
    		msanread(key, t.key.size)
    	}
    	if h == nil || h.count == 0 {
    		if t.hashMightPanic() {
    			t.key.alg.hash(key, 0) // see issue 23734
    		}
    		return
    	}
    	if h.flags&hashWriting != 0 {
    		throw("concurrent map writes")
    	}
    
    	alg := t.key.alg
    	hash := alg.hash(key, uintptr(h.hash0))
    
    	// Set hashWriting after calling alg.hash, since alg.hash may panic,
    	// in which case we have not actually done a write (delete).
    	h.flags ^= hashWriting
    
    	bucket := hash & bucketMask(h.B)
    	if h.growing() { // 判断是否在增长,如果在增长,则对对应的oldbucket 进行迁移
    		growWork(t, h, bucket)
    	}
    	b := (*bmap)(add(h.buckets, bucket*uintptr(t.bucketsize)))
    	bOrig := b // bucket在base区域的位置,但key实际所在位置可能是overflow
    	top := tophash(hash)
    search:
    	for ; b != nil; b = b.overflow(t) {
    		for i := uintptr(0); i < bucketCnt; i++ {
    			if b.tophash[i] != top {
    				if b.tophash[i] == emptyRest { // 搜索到emptyRest,停止搜索
    					break search
    				}
    				continue
    			}
    			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
    			k2 := k
    			if t.indirectkey() {
    				k2 = *((*unsafe.Pointer)(k2))
    			}
    			if !alg.equal(key, k2) {
    				continue
    			}
    			// Only clear key if there are pointers in it.
    			// 清理内存
    			if t.indirectkey() {
    				*(*unsafe.Pointer)(k) = nil
    			} else if t.key.ptrdata != 0 {
    				memclrHasPointers(k, t.key.size) 
    			}
    			e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
    			if t.indirectelem() {
    				*(*unsafe.Pointer)(e) = nil
    			} else if t.elem.ptrdata != 0 {
    				memclrHasPointers(e, t.elem.size)
    			} else {
    				memclrNoHeapPointers(e, t.elem.size)
    			}
    			
    			b.tophash[i] = emptyOne
    			// If the bucket now ends in a bunch of emptyOne states,
    			// change those to emptyRest states.
    			// It would be nice to make this a separate function, but
    			// for loops are not currently inlineable.
    			// 如果emptyOne 后面紧跟的 emptyRest,则把emptyOne设置为emptyRest
    			if i == bucketCnt-1 {
    				if b.overflow(t) != nil && b.overflow(t).tophash[0] != emptyRest {
    					goto notLast
    				}
    			} else {
    				if b.tophash[i+1] != emptyRest {
    					goto notLast
    				}
    			}
    			for {
    				b.tophash[i] = emptyRest
    				if i == 0 {
    					if b == bOrig {
    						break // beginning of initial bucket, we're done.
    					}
    					// Find previous bucket, continue at its last entry.
    					c := b
    					for b = bOrig; b.overflow(t) != c; b = b.overflow(t) { //查找b前面的overflow
    					}
    					i = bucketCnt - 1
    				} else {
    					i--
    				}
    				if b.tophash[i] != emptyOne {
    					break
    				}
    			}
    		notLast:
    			h.count--
    			break search
    		}
    	}
    
    	if h.flags&hashWriting == 0 {
    		throw("concurrent map writes")
    	}
    	h.flags &^= hashWriting
    }
    

    执行流程如下:

    1. 查找key所在bucket,将对应位置的topHash设置为emptyOne,清除对应的keyelem数据;
    2. 如果下一个位置为emptyRest(包括后面紧跟的overflow_bueckt),则将emptyOne修改为emptyRest,向下执行;否则结束流程;
    3. 向前查找前一个位置,如果到了base_bucekt的起始位置,则结束流程;否则跳转到第2步。

    总结

    1. golang map的底层实现是通过hash table实现的,每个bucket可以存贮8个key-elem,通过key_hash的低B(总共划分2^B个桶)bit划分桶,桶内通过topHash(key_hash前8bit)做区分;
    2. hash table在内存中使用连续数组+跳转指针存储,跳转指针指向overflow_bucket,根据key查找的时候都是在连续内存上操作,以此来保证O(1)时间复杂度;
    3. 桶的Grow可以剔除被删除数据占用的空间,使得数据更加紧凑,同时overflow_bucket的排序会发生改变,优先迁移的bucket对应的overflow_bucket地址靠前。有两种形式:same_sizeGrow前后桶数不变),数据分桶格局不变;double_size(扩张后桶数*2), 根据key_hash的B-1 bit决定是划分到first半区还是second半区,完成桶的重新划分。
    4. 删除数据的时候会见对应位置的topHash设置为emptyOne,如果一个bucekt(这里的bucekt是指逻辑上的桶,包括base_bucekt和overflow_bucket)中最后的位置为emptyOne则修改为emptyreset
  • 相关阅读:
    个人永久性免费-Excel催化剂功能第23波-非同一般地批量拆分工作表
    个人永久性免费-Excel催化剂功能第22波-Excel文件类型、密码批量修改,补齐PowerQuery短板
    个人永久性免费-Excel催化剂功能第21波-Excel与Sqlserver零门槛交互-执行SQL语句篇
    个人永久性免费-Excel催化剂功能第20波-Excel与Sqlserver零门槛交互-数据上传篇
    json使用
    jquery 1.9版本下复选框 全选/取消实现
    SSL F5
    apache优化
    Apache 慢连接dos
    php导出数据到excel,防止身份证等数字字符格式变成科学计数的方-------缺点,必须使用table tr td
  • 原文地址:https://www.cnblogs.com/cnblogs-wangzhipeng/p/13292524.html
Copyright © 2011-2022 走看看