zoukankan      html  css  js  c++  java
  • java 线性规划 和lingo 比较

    model:
    max=13*A+ 23*B;

    5*A + 15*B <480 ;
    4*A + 4 *B <160 ;
    35* A + 20 *B <1190 ;

    end


    Variable Value Reduced Cost
    A 12.00000 0.000000
    B 28.00000 0.000000

    Row Slack or Surplus Dual Price
    1 800.0000 1.000000
    2 0.000000 1.000000
    3 0.000000 2.000000
    4 210.0000 0.000000

    public static void test0() {
    double[][] A = {
    { 5, 15 },
    { 4, 4 },
    { 35, 20 }

    };
    double[] c = { 13, 23 };
    double[] b = { 480,160,1190};
    test(A, b, c);
    }


    value = 800.0
    x[0] = 11.999999999999998
    x[1] = 28.0
    y[0] = 1.0
    y[1] = 2.0
    y[2] = -0.0

    package 线性规划;
    
    /**
     * Created by han on 2016/5/5.
     */
    
    import java.io.PrintStream;
    
    /*************************************************************************
     *  Compilation:  javac Simplex.java
     *  Execution:    java Simplex
     *
     *  Given an M-by-N matrix A, an M-length vector b, and an
     *  N-length vector c, solve the  LP { max cx : Ax <= b, x >= 0 }.
     *  Assumes that b >= 0 so that x = 0 is a basic feasible solution.
     *
     *  Creates an (M+1)-by-(N+M+1) simplex tableaux with the
     *  RHS in column M+N, the objective function in row M, and
     *  slack variables in columns M through M+N-1.
     *
     *************************************************************************/
    
    public class Simplex {
        private static final double EPSILON = 1.0E-10;
        private double[][] a;   // tableaux
        private int M;          // number of constraints
        private int N;          // number of original variables
    
        private int[] basis;    // basis[i] = basic variable corresponding to row i
        private static PrintStream StdOut=System.out;
        // only needed to print out solution, not book
    
        // sets up the simplex tableaux
        public Simplex(double[][] A, double[] b, double[] c) {
            M = b.length;
            N = c.length;
            a = new double[M+1][N+M+1];
            for (int i = 0; i < M; i++)
                for (int j = 0; j < N; j++)
                    a[i][j] = A[i][j];
            for (int i = 0; i < M; i++) a[i][N+i] = 1.0;
            for (int j = 0; j < N; j++) a[M][j]   = c[j];
            for (int i = 0; i < M; i++) a[i][M+N] = b[i];
    
            basis = new int[M];
            for (int i = 0; i < M; i++) basis[i] = N + i;
    
            solve();
    
            // check optimality conditions
            assert check(A, b, c);
        }
    
        // run simplex algorithm starting from initial BFS
        private void solve() {
            while (true) {
    
                // find entering column q
                int q = bland();
                if (q == -1) break;  // optimal
    
                // find leaving row p
                int p = minRatioRule(q);
                if (p == -1) throw new RuntimeException("Linear program is unbounded");
    
                // pivot
                pivot(p, q);
    
                // update basis
                basis[p] = q;
            }
        }
    
        // lowest index of a non-basic column with a positive cost
        private int bland() {
            for (int j = 0; j < M + N; j++)
                if (a[M][j] > 0) return j;
            return -1;  // optimal
        }
    
        // index of a non-basic column with most positive cost
        private int dantzig() {
            int q = 0;
            for (int j = 1; j < M + N; j++)
                if (a[M][j] > a[M][q]) q = j;
    
            if (a[M][q] <= 0) return -1;  // optimal
            else return q;
        }
    
        // find row p using min ratio rule (-1 if no such row)
        private int minRatioRule(int q) {
            int p = -1;
            for (int i = 0; i < M; i++) {
                if (a[i][q] <= 0) continue;
                else if (p == -1) p = i;
                else if ((a[i][M+N] / a[i][q]) < (a[p][M+N] / a[p][q])) p = i;
            }
            return p;
        }
    
        // pivot on entry (p, q) using Gauss-Jordan elimination
        private void pivot(int p, int q) {
    
            // everything but row p and column q
            for (int i = 0; i <= M; i++)
                for (int j = 0; j <= M + N; j++)
                    if (i != p && j != q) a[i][j] -= a[p][j] * a[i][q] / a[p][q];
    
            // zero out column q
            for (int i = 0; i <= M; i++)
                if (i != p) a[i][q] = 0.0;
    
            // scale row p
            for (int j = 0; j <= M + N; j++)
                if (j != q) a[p][j] /= a[p][q];
            a[p][q] = 1.0;
        }
    
        // return optimal objective value
        public double value() {
            return -a[M][M+N];
        }
    
        // return primal solution vector
        public double[] primal() {
            double[] x = new double[N];
            for (int i = 0; i < M; i++)
                if (basis[i] < N) x[basis[i]] = a[i][M+N];
            return x;
        }
    
        // return dual solution vector
        public double[] dual() {
            double[] y = new double[M];
            for (int i = 0; i < M; i++)
                y[i] = -a[M][N+i];
            return y;
        }
    
    
        // is the solution primal feasible?
        private boolean isPrimalFeasible(double[][] A, double[] b) {
            double[] x = primal();
    
            // check that x >= 0
            for (int j = 0; j < x.length; j++) {
                if (x[j] < 0.0) {
                    StdOut.println("x[" + j + "] = " + x[j] + " is negative");
                    return false;
                }
            }
    
            // check that Ax <= b
            for (int i = 0; i < M; i++) {
                double sum = 0.0;
                for (int j = 0; j < N; j++) {
                    sum += A[i][j] * x[j];
                }
                if (sum > b[i] + EPSILON) {
                    StdOut.println("not primal feasible");
                    StdOut.println("b[" + i + "] = " + b[i] + ", sum = " + sum);
                    return false;
                }
            }
            return true;
        }
    
        // is the solution dual feasible?
        private boolean isDualFeasible(double[][] A, double[] c) {
            double[] y = dual();
    
            // check that y >= 0
            for (int i = 0; i < y.length; i++) {
                if (y[i] < 0.0) {
                    StdOut.println("y[" + i + "] = " + y[i] + " is negative");
                    return false;
                }
            }
    
            // check that yA >= c
            for (int j = 0; j < N; j++) {
                double sum = 0.0;
                for (int i = 0; i < M; i++) {
                    sum += A[i][j] * y[i];
                }
                if (sum < c[j] - EPSILON) {
                    StdOut.println("not dual feasible");
                    StdOut.println("c[" + j + "] = " + c[j] + ", sum = " + sum);
                    return false;
                }
            }
            return true;
        }
    
        // check that optimal value = cx = yb
        private boolean isOptimal(double[] b, double[] c) {
            double[] x = primal();
            double[] y = dual();
            double value = value();
    
            // check that value = cx = yb
            double value1 = 0.0;
            for (int j = 0; j < x.length; j++)
                value1 += c[j] * x[j];
            double value2 = 0.0;
            for (int i = 0; i < y.length; i++)
                value2 += y[i] * b[i];
            if (Math.abs(value - value1) > EPSILON || Math.abs(value - value2) > EPSILON) {
                StdOut.println("value = " + value + ", cx = " + value1 + ", yb = " + value2);
                return false;
            }
    
            return true;
        }
    
        private boolean check(double[][]A, double[] b, double[] c) {
            return isPrimalFeasible(A, b) && isDualFeasible(A, c) && isOptimal(b, c);
        }
    
        // print tableaux
        public void show() {
            StdOut.println("M = " + M);
            StdOut.println("N = " + N);
            for (int i = 0; i <= M; i++) {
                for (int j = 0; j <= M + N; j++) {
                    StdOut.printf("%7.2f ", a[i][j]);
                }
                StdOut.println();
            }
            StdOut.println("value = " + value());
            for (int i = 0; i < M; i++)
                if (basis[i] < N) StdOut.println("x_" + basis[i] + " = " + a[i][M+N]);
            StdOut.println();
        }
    
    
        public static void test(double[][] A, double[] b, double[] c) {
            Simplex lp = new Simplex(A, b, c);
            StdOut.println("value = " + lp.value());
            double[] x = lp.primal();
            for (int i = 0; i < x.length; i++)
                StdOut.println("x[" + i + "] = " + x[i]);
            double[] y = lp.dual();
            for (int j = 0; j < y.length; j++)
                StdOut.println("y[" + j + "] = " + y[j]);
        }
        public static void test0() {
            double[][] A = {
                    { 5,  15 },
                    {  4, 4 },
                    {  35,  20  }
    
            };
            double[] c = { 13, 23 };
            double[] b = { 480,160,1190};
            test(A, b, c);
        }
        public static void test1() {
            double[][] A = {
                    { -1,  1,  0 },
                    {  1,  4,  0 },
                    {  2,  1,  0 },
                    {  3, -4,  0 },
                    {  0,  0,  1 },
            };
            double[] c = { 1, 1, 1 };
            double[] b = { 5, 45, 27, 24, 4 };
            test(A, b, c);
        }
    
    
        // x0 = 12, x1 = 28, opt = 800
        public static void test2() {
            double[] c = {  13.0,  23.0 };
            double[] b = { 480.0, 160.0, 1190.0 };
            double[][] A = {
                    {  5.0, 15.0 },
                    {  4.0,  4.0 },
                    { 35.0, 20.0 },
            };
            test(A, b, c);
        }
    
        // unbounded
        public static void test3() {
            double[] c = { 2.0, 3.0, -1.0, -12.0 };
            double[] b = {  3.0,   2.0 };
            double[][] A = {
                    { -2.0, -9.0,  1.0,  9.0 },
                    {  1.0,  1.0, -1.0, -2.0 },
            };
            test(A, b, c);
        }
    
        // degenerate - cycles if you choose most positive objective function coefficient
        public static void test4() {
            double[] c = { 10.0, -57.0, -9.0, -24.0 };
            double[] b = {  0.0,   0.0,  1.0 };
            double[][] A = {
                    { 0.5, -5.5, -2.5, 9.0 },
                    { 0.5, -1.5, -0.5, 1.0 },
                    { 1.0,  0.0,  0.0, 0.0 },
            };
            test(A, b, c);
        }
    
    
    
        // test client
        public static void main(String[] args) {
            try                 { test0();             }
            catch (Exception e) { e.printStackTrace(); }
            StdOut.println("--------------------------------");
    
            try                 { test1();             }
            catch (Exception e) { e.printStackTrace(); }
            StdOut.println("--------------------------------");
    
            try                 { test2();             }
            catch (Exception e) { e.printStackTrace(); }
            StdOut.println("--------------------------------");
    
            try                 { test3();             }
            catch (Exception e) { e.printStackTrace(); }
            StdOut.println("--------------------------------");
    
            try                 { test4();             }
            catch (Exception e) { e.printStackTrace(); }
            StdOut.println("--------------------------------");
    
    
            int M = Integer.parseInt(args[0]);
            int N = Integer.parseInt(args[1]);
            double[] c = new double[N];
            double[] b = new double[M];
            double[][] A = new double[M][N];
            for (int j = 0; j < N; j++)
                c[j] = StdRandom.uniform(1000);
            for (int i = 0; i < M; i++)
                b[i] = StdRandom.uniform(1000);
            for (int i = 0; i < M; i++)
                for (int j = 0; j < N; j++)
                    A[i][j] = StdRandom.uniform(100);
            Simplex lp = new Simplex(A, b, c);
            StdOut.println(lp.value());
        }
    
        private static class StdRandom {
            public static double uniform(int i) {
                return Math.random()*i;
            }
        }
    }
  • 相关阅读:
    数组构建完全二叉树
    [.net core学习] .net core中的MD5CryptoServiceProvider取代方法
    [.net core学习] .net core中的MD5CryptoServiceProvider取代方法
    [.net core学习] .net core中的MD5CryptoServiceProvider取代方法
    [.net core学习] .net core中的MD5CryptoServiceProvider取代方法
    交互式访问数据库
    Jackson /常用注解/ annotation
    vue图表组件使用,组件文档echarts
    java8 Optional 容器类
    java8 : Lambda 方法引用
  • 原文地址:https://www.cnblogs.com/cndavy/p/5462554.html
Copyright © 2011-2022 走看看