zoukankan      html  css  js  c++  java
  • 第十一次作业 LL(1)文法的判断,递归下降分析程序

    1. 文法 G(S):

    (1)S -> AB

    (2)A ->Da|ε

    (3)B -> cC

    (4)C -> aADC |ε

    (5)D -> b|ε

    验证文法 G(S)是不是 LL(1)文法?

    FIRST集:

           FIRST(A) = { b , a , ε}

           FIRST(C) = { a , ε}

           FIRST(D) = { b , ε}

    FOLLOW集:

      FOLLOW (A) = { c , b , a , ε}

           FOLLOW (C) = { # }

           FOLLOW (D) = { a , #}

    SELECT集:

           SELECT( A -> Da ) = FIRST( Da ) = { b , a }

           SELECT( A -> Da) = FIRST(Da) = { b, a }

      SELECT( A -> ε) = FOLLOW( A) = { c, b, a, # }

      SELECT( C -> aADC) = FIRST( aADC) = { a }

      SELECT( C -> ε) = FOLLOW(C) = { # }

      SELECT( D -> b) = FIRST(b) = { b }

      SELECT( D -> ε ) =FOLLOW(D) = { a, # }

    因为SELECT( A -> Da) ∩ SELECT( A -> ε) = { a } ≠ ∅,所以文法G(S)不是 LL(1)文法。

    2.(上次作业)消除左递归之后的表达式文法是否是LL(1)文法?

    将以下文法消除左递归,分析符号串 i*i+i 。

       并分别求FIRST集、FOLLOW集,和SELECT集

         E -> E+T | T

         T -> T*F | F

         F -> (E) | i

    消除左递归:

    E -> TE'

          E' -> +TE' | ε 

          T -> FT'

          T' -> *FT' | ε 

          F -> (E) | i

    FIRST集:

      FIRST(E) = { ( , i }

      FIRST(E') = {+ , ε }

      FIRST(T) = { ( , i }

      FIRST(T') = { * , ε }

      FIRST(F) = { ( , i }

    FOLLOW集:

           FOLLOW(E) = { ) , # }

           FOLLOW(E') = { ) , # }

           FOLLOW(T) = { + , ) ,#}

           FOLLOW(T') = {+ , ) ,#}

           FOLLOW(F) = {* , + , ) ,#}

    SELECT集:

      SELECT (E -> TE') = FIRST(TE') = { ( , i }

           SELECT(E' -> +TE') = FIRST(+TE') = { + }

           SELECT(E' -> ε) = FIRST(ε) - {ε} U FOLLOW(E') = FOLLOW(E') = { ) , # }

           SELECT(T -> FT') = FIRST(FT') = { ( , i }

           SELECT(T' -> *FT') = FIRST(*FT') = { * }

           SELECT(T' -> ε) = FIRST(ε) - {ε} U FOLLOW(T') = FOLLOW(T') = { + , ) ,# }

           SELECT(F -> (E)) = FIRST((E)) = { ( }

           SELECT(F -> i) = FIRST(i) = { i }

    因为SELECT(E' -> +TE') ∩ SELECT(E' -> ε) = ∅,

      SELECT(T' -> *FT') ∩ SELECT(T' -> ε) = ∅,

      SELECT(F -> (E)) ∩ SELECT(F -> (E))   = ∅,

    所以该文法是 LL(1)文法

    3.接2,如果是LL(1)文法,写出它的递归下降语法分析程序代码。

      void ParseE(){

             if(lookahead==’(’ || lookahead==’i’){

               ParseT();

               ParseE’();

        }else{
               printf(“syntax error ”);

               exit(0);

        }

      }

       void ParseE’(){

        switch(lookahead){
               case ’+’:

                      MatchToken(’+’);

                      ParseT();

                      ParseE’();

                      break;

               case ’)’,’#’:

                      break;

               default:

                      printf(“syntax error ”);

                      exit(0);

          }

      }

       void ParseT(){

        if(lookahead==’(’ || lookahead==’i’ ){
               ParseF();

               ParseT’();

        } else{
               printf(“syntax error ”);

               exit(0);

        }

      }

       void ParseT’(){

        switch(lookahead){
               case ’*’:

                      MatchToken(’*’);

                      ParseF();

                      ParseT’();

                      break;

               case ’+’,’)’,’#’:

                      break;

               default:

                      printf(“syntax error ”);

                      exit(0);

        }

       }

       void ParseF(){

        switch(lookahead){
               case ’(’:

                      MatchToken( ’(’);

                      ParseE();

                      MatchToken(’)’ );

                      break;

               case ’i’:

                      MatchToken(’i’);

                      break;

               default:

                      printf(“syntax error ”);

                      exit(0);

        }

      }

     4.加上实验一的词法分析程序,形成可运行的语法分析程序,分析任意输入的符号串是不是合法的表达式。

  • 相关阅读:
    WordCount项目基本功能
    让自己的头脑极度开放
    Docker安装Mysql5.7
    MySQL中的函数索引(Generated Column)及一次SQL优化
    关于老系统的重构和优化选择
    JIRA笔记(一):安装部署JIRA
    Jenkins 配置GitLab插件和Git插件
    Loading descriptor for XXX.'has encountered a problem' A internal error occured during:"Loading ....."
    Newton插值的C++实现
    Lagrange插值C++程序
  • 原文地址:https://www.cnblogs.com/cndl/p/11905087.html
Copyright © 2011-2022 走看看