zoukankan      html  css  js  c++  java
  • 15 手写数字识别-小数据集

    1.手写数字数据集

    • from sklearn.datasets import load_digits
    • digits = load_digits()
    digits = load_digits()
    X_data = digits.data.astype(np.float32)
    Y_data = digits.target.astype(np.float32).reshape(-1, 1)# 将Y_data变为一列

    2.图片数据预处理

    • x:归一化MinMaxScaler()
    • y:独热编码OneHotEncoder()或to_categorical
    • 训练集测试集划分
    • 张量结构
    # 将属性缩放到一个指定的最大和最小值(通常是1-0之间)
    scaler = MinMaxScaler()
    X_data = scaler.fit_transform(X_data)
    print("MinMaxScaler_trans_X_data:")
    print(X_data)
    
    Y = OneHotEncoder().fit_transform(Y_data).todense()# 进行oe-hot编码
    print("one-hot_Y:")
    print(Y)
    
    # 转换为图片的格式(batch, height, width, channels)
    X = X_data.reshape(-1, 8, 8, 1)
    
    X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0, stratify=Y)
    print('X_train.shape, X_test.shape, y_train.shape, y_test.shape:', X_train.shape, X_test.shape, y_train.shape, y_test.shape)

    x:归一化MinMaxScaler()

    y:独热编码OneHotEncoder()或to_categorical

     

    训练集测试集划分

     

    3.设计卷积神经网络结构

    • 绘制模型结构图,并说明设计依据。

    model = Sequential()
    ks = (3, 3)  # 卷积核的大小
    input_shape = X_train.shape[1:]
    model.add(Conv2D(filters=16, kernel_size=ks, padding='same', input_shape=input_shape, activation='relu'))# 一层卷积,padding='same',tensorflow会对输入自动补0
    model.add(MaxPool2D(pool_size=(2, 2)))# 池化层1
    model.add(Dropout(0.25))# 防止过拟合,随机丢掉连接
    model.add(Conv2D(filters=32, kernel_size=ks, padding='same', activation='relu'))# 二层卷积
    model.add(MaxPool2D(pool_size=(2, 2)))# 池化层2
    model.add(Dropout(0.25))
    model.add(Conv2D(filters=64, kernel_size=ks, padding='same', activation='relu'))# 三层卷积
    model.add(Conv2D(filters=128, kernel_size=ks, padding='same', activation='relu'))# 四层卷积
    model.add(MaxPool2D(pool_size=(2, 2)))# 池化层3
    model.add(Dropout(0.25))
    
    model.add(Flatten())# 平坦层
    model.add(Dense(128, activation='relu'))# 全连接层
    model.add(Dropout(0.25))
    model.add(Dense(10, activation='softmax'))# 激活函数softmax
    model.summary()

     

    4.模型训练

    # 训练模型
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    train_history = model.fit(x=X_train, y=y_train, validation_split=0.2, batch_size=300, epochs=10, verbose=2)
    score = model.evaluate(X_test,y_test)
    score

    第一次运行损失率loss:1.2753,准确率accuracy:0.6750

     

    第二次运行

     

    训练参数可视化
    # 定义训练参数可视化
    def show_train_history(train_history, train, validation):
        plt.plot(train_history.history[train])
        plt.plot(train_history.history[validation])
        plt.title('Train History')
        plt.ylabel('train')
        plt.xlabel('epoch')
        plt.legend(['train', 'validation'], loc='upper left')
        plt.show()
    # 准确率
    show_train_history(train_history, 'accuracy', 'val_accuracy')
    # 损失率
    show_train_history(train_history, 'loss', 'val_loss')
    准确率

     

    损失率

    5.模型评价

    • model.evaluate()
    • 交叉表与交叉矩阵
    • pandas.crosstab
    • seaborn.heatmap
    # 模型评价
    score = model.evaluate(X_test, y_test)
    print('score:', score)
    # 预测值
    y_pred = model.predict_classes(X_test)
    print('y_pred:', y_pred[:10])
    # 交叉表与交叉矩阵
    y_test1 = np.argmax(y_test, axis=1).reshape(-1)
    y_true = np.array(y_test1)[0]
    # 交叉表查看预测数据与原数据对比
    pd.crosstab(y_true, y_pred, rownames=['true'], colnames=['predict'])
    
    # 交叉矩阵
    y_test1 = y_test1.tolist()[0]
    a = pd.crosstab(np.array(y_test1), y_pred)
    df = pd.DataFrame(a)
    sns.heatmap(df, annot=True, cmap="YlGnBu", linewidths=0.2, linecolor='G')
    plt.show()
    模型评价score,预测值y_pred

    交叉表查看预测数据与原数据对比

     

     代码如下:

    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    from sklearn.datasets import load_digits#小数据集8*8
    from sklearn.model_selection import train_test_split# 训练集测试集划分
    from sklearn.preprocessing import OneHotEncoder#独热编码
    from sklearn.preprocessing import MinMaxScaler#归一化
    import tensorflow as tf
    from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import Dense,Dropout,Flatten,Conv2D,MaxPool2D
    from sklearn.metrics import accuracy_score
    import seaborn as sns
    
    digits = load_digits()
    X_data = digits.data.astype(np.float32)
    Y_data = digits.target.astype(np.float32).reshape(-1, 1)# 将Y_data变为一列
    
    
    # 将属性缩放到一个指定的最大和最小值(通常是1-0之间)
    scaler = MinMaxScaler()
    X_data = scaler.fit_transform(X_data)
    print("MinMaxScaler_trans_X_data:")
    print(X_data)
    
    Y = OneHotEncoder().fit_transform(Y_data).todense()# 进行oe-hot编码
    print("one-hot_Y:")
    print(Y)
    
    # 转换为图片的格式(batch, height, width, channels)
    X = X_data.reshape(-1, 8, 8, 1)
    
    X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0, stratify=Y)
    print('X_train.shape, X_test.shape, y_train.shape, y_test.shape:', X_train.shape, X_test.shape, y_train.shape, y_test.shape)
    
    
    model = Sequential()
    ks = (3, 3)  # 卷积核的大小
    input_shape = X_train.shape[1:]
    model.add(Conv2D(filters=16, kernel_size=ks, padding='same', input_shape=input_shape, activation='relu'))# 一层卷积,padding='same',tensorflow会对输入自动补0
    model.add(MaxPool2D(pool_size=(2, 2)))# 池化层1
    model.add(Dropout(0.25))# 防止过拟合,随机丢掉连接
    model.add(Conv2D(filters=32, kernel_size=ks, padding='same', activation='relu'))# 二层卷积
    model.add(MaxPool2D(pool_size=(2, 2)))# 池化层2
    model.add(Dropout(0.25))
    model.add(Conv2D(filters=64, kernel_size=ks, padding='same', activation='relu'))# 三层卷积
    model.add(Conv2D(filters=128, kernel_size=ks, padding='same', activation='relu'))# 四层卷积
    model.add(MaxPool2D(pool_size=(2, 2)))# 池化层3
    model.add(Dropout(0.25))
    
    model.add(Flatten())# 平坦层
    model.add(Dense(128, activation='relu'))# 全连接层
    model.add(Dropout(0.25))
    model.add(Dense(10, activation='softmax'))# 激活函数softmax
    model.summary()
    
    
    # 训练模型
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    train_history = model.fit(x=X_train, y=y_train, validation_split=0.2, batch_size=300, epochs=10, verbose=2)
    score = model.evaluate(X_test,y_test)
    score
    
    
    # 定义训练参数可视化
    def show_train_history(train_history, train, validation):
        plt.plot(train_history.history[train])
        plt.plot(train_history.history[validation])
        plt.title('Train History')
        plt.ylabel('train')
        plt.xlabel('epoch')
        plt.legend(['train', 'validation'], loc='upper left')
        plt.show()
    # 准确率
    show_train_history(train_history, 'accuracy', 'val_accuracy')
    # 损失率
    show_train_history(train_history, 'loss', 'val_loss')
    
    
    # 模型评价
    score = model.evaluate(X_test, y_test)
    print('score:', score)
    # 预测值
    y_pred = model.predict_classes(X_test)
    print('y_pred:', y_pred[:10])
    # 交叉表与交叉矩阵
    y_test1 = np.argmax(y_test, axis=1).reshape(-1)
    y_true = np.array(y_test1)[0]
    # 交叉表查看预测数据与原数据对比
    pd.crosstab(y_true, y_pred, rownames=['true'], colnames=['predict'])
    
    # 交叉矩阵
    y_test1 = y_test1.tolist()[0]
    a = pd.crosstab(np.array(y_test1), y_pred, rownames=['Lables'], colnames=['Predict'])
    df = pd.DataFrame(a)
    sns.heatmap(df, annot=True, cmap="YlGnBu", linewidths=0.2, linecolor='G')
    plt.show()
  • 相关阅读:
    dmesg 时间转换
    [转载]Linux性能测试 ss命令
    [转载]Python高效编程技巧
    [转载]Latency Numbers Every Programmer Should Know
    几道有意思的智力面试题
    单网卡多ip配置
    [转]Office visio 2007 打开后死机,提示关闭
    [转]C++的五种内存存储区
    [转]Linux性能测试 pmap命令
    利用wojilu框架仿一个网站的全过程(Step by Step利用wojilu框架开发网站系列序言)
  • 原文地址:https://www.cnblogs.com/cndl/p/13068565.html
Copyright © 2011-2022 走看看