zoukankan      html  css  js  c++  java
  • poj

    Time Limit: 1000MS   Memory Limit: 131072K
    Total Submissions: 14547   Accepted: 4759

    Description

    Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

    Choose k different positive integers a1a2…, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1a2, …, ak are properly chosen, m can be determined, then the pairs (airi) can be used to express m.

    “It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

    Since Elina is new to programming, this problem is too difficult for her. Can you help her?

    Input

    The input contains multiple test cases. Each test cases consists of some lines.

    • Line 1: Contains the integer k.
    • Lines 2 ~ k + 1: Each contains a pair of integers airi (1 ≤ i ≤ k).

    Output

    Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

    Sample Input

    2
    8 7
    11 9

    Sample Output

    31

    Hint

    All integers in the input and the output are non-negative and can be represented by 64-bit integral types.

    Source

    题意:
    给你n个线性同余方程,让你求解这个方程组。
    思路:
    对于同余方程(x≡b(mod m) 等价于 x = b1 + m1*x1;所以对于两个同余方程组,就有b1+m1*x1=b2+m2*x2。移项得到m2*y2-m1*y1=b1-b2;根据扩展欧几里得课以求出y1的值,带回就可以求出X,X是这个方程的一个特解,通解为X = X'+k*lcm(m1, m2),两边同时取模,得到X mod lcm(m1. m2)= X',这就是两个方程合并之后的结果。
    #include <map>
    #include <set>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <queue>
    #include <iostream>
    #include <stack>
    #include <cmath>
    #include <string>
    #include <vector>
    #include <cstdlib>
    //#include <bits/stdc++.h>
    //#define LOACL
    #define space " "
    using namespace std;
    typedef long long LL;
    //typedef __int64 Int;
    typedef pair<int, int> paii;
    const int INF = 0x3f3f3f3f;
    const double ESP = 1e-5;
    const double PI = acos(-1.0);
    const long long MOD = 1e9 + 7;
    const int MAXN = 1e5;
    void ext_gcd(LL a, LL b, LL& d, LL& x, LL& y) {
        if (!b){x = 1;d = a; y = 0;}
        else {
            ext_gcd(b, a%b, d, y, x);
            y -= x*(a/b);
        }
    }
    void solved(int n) {
        bool flag = false;
        LL a0, r0, a1, r1, x, y, a ,b, c, d;
        scanf("%lld%lld", &a0, &r0);
        for (int i = 1; i < n; i++) {
            scanf("%lld%lld", &a1, &r1);
            a = a0, b = a1, c = r1 - r0;
            ext_gcd(a, b, d, x, y);
            if (c%d) flag = true;
            x = ((x*c/d)%(b/d) + b/d)%(b/d);
            r0 = a0*x + r0;
            a0 = a1*a0/d;
        }
        if (flag) printf("-1
    ");
        else printf("%lld
    ", r0);
    }
    int main() {
        int n;
        while (scanf("%d", &n) != EOF) {
            solved(n);
        }
        return 0;
    }
     


  • 相关阅读:
    IOC和工厂模式联合使用简化工厂模式
    免安装解压版mysql瘦身
    MYPM 国产非开源免费测试管理工具软件 WEB2.0用户体验零配置安装版本发布
    巧用Junit 静态变量
    动态加载JS和CSS
    浅谈测试管理工具对新人的潜移默化
    Pidgin——我用的环保QQ版本。无需安装解压即可运行。送上我本人写的菜鸟教材。
    我有一个梦想:WM手机商城创意。有初步的整体结构设计包括软硬件、服务器、客户端
    Form.close与Application.Exit()的区别
    ASP.NET 使用CustomValidator调用js函数动态修改验证TextBox的正则表达式,无刷新
  • 原文地址:https://www.cnblogs.com/cniwoq/p/6770778.html
Copyright © 2011-2022 走看看