zoukankan      html  css  js  c++  java
  • codeforces500b New Year Permutation 【floyd】

    New Year Permutation
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    User ainta has a permutation p1, p2, ..., pn. As the New Year is coming, he wants to make his permutation as pretty as possible.

    Permutation a1, a2, ..., an is prettier than permutation b1, b2, ..., bn, if and only if there exists an integer k (1 ≤ k ≤ n) where a1 = b1, a2 = b2, ..., ak - 1 = bk - 1 and ak < bk all holds.

    As known, permutation p is so sensitive that it could be only modified by swapping two distinct elements. But swapping two elements is harder than you think. Given an n × n binary matrix A, user ainta can swap the values of pi and pj (1 ≤ i, j ≤ ni ≠ j) if and only ifAi, j = 1.

    Given the permutation p and the matrix A, user ainta wants to know the prettiest permutation that he can obtain.

    Input

    The first line contains an integer n (1 ≤ n ≤ 300) — the size of the permutation p.

    The second line contains n space-separated integers p1, p2, ..., pn — the permutation p that user ainta has. Each integer between 1and n occurs exactly once in the given permutation.

    Next n lines describe the matrix A. The i-th line contains n characters '0' or '1' and describes the i-th row of A. The j-th character of the i-th line Ai, j is the element on the intersection of the i-th row and the j-th column of A. It is guaranteed that, for all integers i, j where 1 ≤ i < j ≤ nAi, j = Aj, i holds. Also, for all integers i where 1 ≤ i ≤ nAi, i = 0 holds.

    Output

    In the first and only line, print n space-separated integers, describing the prettiest permutation that can be obtained.

    Examples
    input
    7
    5 2 4 3 6 7 1
    0001001
    0000000
    0000010
    1000001
    0000000
    0010000
    1001000
    
    output
    1 2 4 3 6 7 5
    
    input
    5
    4 2 1 5 3
    00100
    00011
    10010
    01101
    01010
    
    output
    1 2 3 4 5
    
    Note

    In the first sample, the swap needed to obtain the prettiest permutation is: (p1, p7).

    In the second sample, the swaps needed to obtain the prettiest permutation is (p1, p3), (p4, p5), (p3, p4).

    permutation p is a sequence of integers p1, p2, ..., pn, consisting of n distinct positive integers, each of them doesn't exceed n. The i-th element of the permutation p is denoted as pi. The size of the permutation p is denoted as n.

    思路: 先用Floyd处理一下

    #include <map>
    #include <set>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <queue>
    #include <iostream>
    #include <stack>
    #include <cmath>
    #include <string>
    #include <vector>
    #include <cstdlib>
    //#include <bits/stdc++.h>
    //#define LOACL
    #define space " "
    using namespace std;
    //typedef long long Long;
    //typedef __int64 Int;
    typedef pair<int, int> paii;
    const int INF = 0x3f3f3f3f;
    const double ESP = 1e-5;
    const double PI = acos(-1.0);
    const int MOD = 1e9 + 7;
    const int MAXN = 300 + 10;
    int ans[MAXN], pos[MAXN], ar[MAXN];
    bool vis[MAXN];
    char judge[MAXN][MAXN];
    int main() {
        int n;
        while (scanf("%d", &n) != EOF) {
            for (int i = 1; i <= n; i++) {
                scanf("%d", &ar[i]);
                pos[ar[i]] = i;
            }
            for (int i = 1; i <= n; i++) {
                scanf("%s", judge[i] + 1);
                judge[i][i] = '1';
            }
            //求出每个点可以到达的所有点
            for (int i = 1; i <= n; i++) {
                for (int j = 1; j <= n; j++) {
                    for (int k = 1; k <= n; k++) {
                        if (judge[i][j] == '1' && judge[j][k] == '1') {
                            judge[i][k] = '1';
                        }
                    }
                }
            }
            //i代表每一个位置
            memset(vis, false, sizeof(vis));
            for (int i = 1; i <= n; i++) {
                //每次都从最小的开始
                for (int j = 1; j <= n; j++) {
                    if (!vis[j] && judge[i][pos[j]] == '1') {
                        vis[j] = true; ans[i] = j;
                        //交换位置
                        pos[j] = i; pos[ar[i]] = pos[j];
                        break;
                    }
                }
            }
            for (int i = 1; i <= n; i++) {
                if (i != n) printf("%d ",ans[i]);
                else printf("%d
    ", ans[i]);
            }
        }
        return 0;
    }



  • 相关阅读:
    OpenGL3:幼儿园篇 第三章 几何变换
    OpenCV2:应用篇 三维重建
    Word绑定博客园
    Android大学课件SQLite3 数据库操作
    Android Studio导入jar包
    安卓Android基础四天
    学习Android过程中遇到的未解决问题(个人笔记,细节补充,随时更新)
    学习Android过程中遇到的问题及解决方法——电话监听
    学习Android过程中遇到的问题及解决方法——网络请求
    安卓Android基础第三天——数据库,ListView
  • 原文地址:https://www.cnblogs.com/cniwoq/p/6770789.html
Copyright © 2011-2022 走看看