zoukankan      html  css  js  c++  java
  • HDU Problem 1513 Palindrome 【LCS】

    Palindrome

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 5182    Accepted Submission(s): 1770

    Problem Description
    A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a program which, given a string, determines the minimal number of characters to be inserted into the string in order to obtain a palindrome. 

    As an example, by inserting 2 characters, the string "Ab3bd" can be transformed into a palindrome ("dAb3bAd" or "Adb3bdA"). However, inserting fewer than 2 characters does not produce a palindrome.
     
    Input
    Your program is to read from standard input. The first line contains one integer: the length of the input string N, 3 <= N <= 5000. The second line contains one string with length N. The string is formed from uppercase letters from 'A' to 'Z', lowercase letters from 'a' to 'z' and digits from '0' to '9'. Uppercase and lowercase letters are to be considered distinct.
     
    Output
    Your program is to write to standard output. The first line contains one integer, which is the desired minimal number.
     
    Sample Input
    5 Ab3bd
     
    Sample Output
    2
     
    Source
     
    Recommend
    linle   |   We have carefully selected several similar problems for you:  1505 1506 1074 1510 2602 
     
    题意:问你最少插入多少个字符才可以使当前的字符串为回文字符串。
    思路:如果这个字符串和他的逆串的LCS有公共的部分,说明公共部分的字符不需要再次替换了。而对于没在公共串上的元素,添加这些数量字串在相应的位置就可以。没有证明,但是想想就明白了。
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    const int MAXN = 5010;
    int dp[2][MAXN], n;
    char a[MAXN], b[MAXN];
    int main() {
        while (scanf("%d", &n) != EOF) {
            scanf("%s", a);
            for (int i = 0; i < n; i++) {
                b[n - 1 - i] = a[i];
            }
            memset(dp, 0, sizeof(dp));
            for (int i = 1; i <= n; i++) {
                for (int j = 1; j <= n; j++) {
                    if (a[i-1] == b[j-1]) dp[i%2][j] = dp[(i+1)%2][j-1] + 1;
                    else dp[i%2][j] = max(dp[(i+1)%2][j], dp[i%2][j - 1]);
                }
            }
            printf("%d
    ", n - dp[n%2][n]);
        }
        return 0;
    }


  • 相关阅读:
    滚动加载图片
    轮播图
    各种插件
    IE兼容
    文字换行
    CSS3 transform用法
    隐藏手机号中间几位数
    js实现收藏,首页等功能
    loading练习
    animation练习
  • 原文地址:https://www.cnblogs.com/cniwoq/p/6770831.html
Copyright © 2011-2022 走看看