zoukankan      html  css  js  c++  java
  • HDU Problem 5773 The All-purpose Zero 【LIS】

    The All-purpose Zero

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 1562    Accepted Submission(s): 747

    Problem Description
    ?? gets an sequence S with n intergers(0 < n <= 100000,0<= S[i] <= 1000000).?? has a magic so that he can change 0 to any interger(He does not need to change all 0 to the same interger).?? wants you to help him to find out the length of the longest increasing (strictly) subsequence he can get.
     
    Input
    The first line contains an interger T,denoting the number of the test cases.(T <= 10)
    For each case,the first line contains an interger n,which is the length of the array s.
    The next line contains n intergers separated by a single space, denote each number in S.
     
    Output
    For each test case, output one line containing “Case #x: y”(without quotes), where x is the test case number(starting from 1) and y is the length of the longest increasing subsequence he can get.
     
    Sample Input
    2 7 2 0 2 1 2 0 5 6 1 2 3 3 0 0
     
    Sample Output
    Case #1: 5 Case #2: 5
    Hint
    In the first case,you can change the second 0 to 3.So the longest increasing subsequence is 0 1 2 3 5.
     
    Author
    FZU
     
    Source
     
    Recommend
    wange2014   |   We have carefully selected several similar problems for you:  5831 5830 5829 5828 5827 
     
    这道题比较麻烦的是零比较难处理。如果将零拿出来,有一个bug是零不起作用(例如:1,0,2)。但是我在博客上学到一种巧妙地处理方法——把每个数减去前面零的个数,这样当遇到上面的问题时就会巧妙地避开。
    #include <bits/stdc++.h>
    using namespace std;
    const int MAXN = 100010;
    const int INF = 0x3f3f3f3f;
    int ar[MAXN], g[MAXN], dp[MAXN], a[MAXN];
    int main() {
        int t , cut = 0;
        scanf("%d", &t);
        while (t--) {
            int C0 = 0, cnt = 0;
            int n; scanf("%d", &n); 
            for (int i = 1; i <= n; i++) {
                scanf("%d", &a[i]);
            }
            for (int i = 1; i <= n; i++) {
                if (a[i] == 0) C0++;
                else {
                    a[i] -= C0; ar[++cnt] = a[i];
                    g[cnt] = INF;
                }
            }
            int ans = 0;
            for (int i = 1; i <= cnt; i++) {
                int k = lower_bound(g + 1, g + 1 + cnt, ar[i]) - g;
                dp[i] = k; g[k] = min(g[k], ar[i]);
                ans = max(dp[i], ans);
            }
            printf("Case #%d: %d
    ", ++cut, ans + C0);
        }
        return 0;
    }
     


  • 相关阅读:
    Selenium2+python自动化6-八种元素元素定位(Firebug和firepath)
    Selenium2+python自动化5-操作浏览器基本方法
    Selenium2+python自动化4-Pycharm使用
    Selenium2+python自动化3-解决pip使用异常
    Selenium2+python自动化2-pip降级selenium3.0
    Selenium2+python自动化1-环境搭建
    由《大宅门》看季宗布的育人之道
    三大线性排序之计数排序
    反转字符串
    out.print和out.write方法
  • 原文地址:https://www.cnblogs.com/cniwoq/p/6770832.html
Copyright © 2011-2022 走看看