zoukankan      html  css  js  c++  java
  • POJ Problem 1745 Divisibility 【dp】

    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 11461   Accepted: 4100

    Description

    Consider an arbitrary sequence of integers. One can place + or - operators between integers in the sequence, thus deriving different arithmetical expressions that evaluate to different values. Let us, for example, take the sequence: 17, 5, -21, 15. There are eight possible expressions: 17 + 5 + -21 + 15 = 16 
    17 + 5 + -21 - 15 = -14 
    17 + 5 - -21 + 15 = 58 
    17 + 5 - -21 - 15 = 28 
    17 - 5 + -21 + 15 = 6 
    17 - 5 + -21 - 15 = -24 
    17 - 5 - -21 + 15 = 48 
    17 - 5 - -21 - 15 = 18 
    We call the sequence of integers divisible by K if + or - operators can be placed between integers in the sequence in such way that resulting value is divisible by K. In the above example, the sequence is divisible by 7 (17+5+-21-15=-14) but is not divisible by 5. 

    You are to write a program that will determine divisibility of sequence of integers. 

    Input

    The first line of the input file contains two integers, N and K (1 <= N <= 10000, 2 <= K <= 100) separated by a space. 
    The second line contains a sequence of N integers separated by spaces. Each integer is not greater than 10000 by it's absolute value. 

    Output

    Write to the output file the word "Divisible" if given sequence of integers is divisible by K or "Not divisible" if it's not.

    Sample Input

    4 7
    17 5 -21 15

    Sample Output

    Divisible
    

    Source

    思路:
        用数组dp[i][j]判断后i个数mod k 的余数是不是k。状态转移方程为dp[i][abs(ar[j]-j)%k] = true(减去后面的数)和dp[i][abs(ar[j]+j)%k] = true(加上后面的数)。

    #include <cstdio>
    #include <iostream>
    #include <cstring>
    #include <algorithm>
    #define MAXN 10005
    using namespace std;
    bool dp[MAXN][105];
    int ar[MAXN];
    int main() {
        int t, n, a, b, k;
        while (scanf("%d%d", &n, &k) != EOF) {
            memset(dp, false, sizeof(dp));
            for (int i = 1; i <= n; i++) {
                scanf("%d", &ar[i]);
            }
            dp[n][abs(ar[n]%k)] = true;
            for (int i = n - 1; i >= 1; i--) {
                for (int j = 0; j < k; j++) {
                    if (dp[i+1][j]) {
                        dp[i][abs(j+ar[i])%k] = true;
                        dp[i][abs(j-ar[i])%k] = true;
                    }
                }
            }
            if (dp[1][0]) printf("Divisible
    ");
            else printf("Not divisible
    ");
        }
        return 0;
    }




  • 相关阅读:
    React Children 使用
    Redux 中间件和异步操作
    Redux 核心概念
    React 的setState 异步理解
    JS 中类型和类型转换
    ES6 新增集合----- Set 和Map
    ES6 新增基本数据类型Symbol
    ES6 解构赋值
    ES6 对象增强
    ES6 中的let 和 const
  • 原文地址:https://www.cnblogs.com/cniwoq/p/6770847.html
Copyright © 2011-2022 走看看