zoukankan      html  css  js  c++  java
  • HDU Problem 2196 Computer【树的直径】

    Computer

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 5638    Accepted Submission(s): 2818

    Problem Description
    A school bought the first computer some time ago(so this computer's id is 1). During the recent years the school bought N-1 new computers. Each new computer was connected to one of settled earlier. Managers of school are anxious about slow functioning of the net and want to know the maximum distance Si for which i-th computer needs to send signal (i.e. length of cable to the most distant computer). You need to provide this information. 


    Hint: the example input is corresponding to this graph. And from the graph, you can see that the computer 4 is farthest one from 1, so S1 = 3. Computer 4 and 5 are the farthest ones from 2, so S2 = 2. Computer 5 is the farthest one from 3, so S3 = 3. we also get S4 = 4, S5 = 4.
     
    Input
    Input file contains multiple test cases.In each case there is natural number N (N<=10000) in the first line, followed by (N-1) lines with descriptions of computers. i-th line contains two natural numbers - number of computer, to which i-th computer is connected and length of cable used for connection. Total length of cable does not exceed 10^9. Numbers in lines of input are separated by a space.
     
    Output
    For each case output N lines. i-th line must contain number Si for i-th computer (1<=i<=N).
     
    Sample Input
    5 1 1 2 1 3 1 1 1
     
    Sample Output
    3 2 3 4 4
     
    Author
    scnu
     
    Recommend
    lcy   |   We have carefully selected several similar problems for you:  1561 1011 3456 1520 2242 
     
    根据树的直径的证明知道,从树上的任意一点到达的最远距离必定是树的两个端点,所以先BFS一个端点 ,求出各个节点到这个短点的距离,再bfs另外一个端点,则树上的节点到这两个短点的最大值为这个节点在树上可求得最大距离。

    #include <bits/stdc++.h>
    #define MAXN 10010
    using namespace std;
    struct node{
        int from, to, val, next;
    } edge[MAXN*2];
    int dist1[MAXN], head[MAXN], edgenum, s, dist2[MAXN];
    int ans;
    bool vis[MAXN];
    void init() {
        memset(head, -1, sizeof(head));
        edgenum = 0;
    }
    void addEdge(int x, int y, int z) {
        edge[edgenum].from = x;
        edge[edgenum].to = y;
        edge[edgenum].val = z;
        edge[edgenum].next = head[x];
        head[x] = edgenum++;
    }
    void bfs1(int x) {
        queue<int> que; ans = 0;
        memset(vis, false, sizeof(vis));
        memset(dist1, 0, sizeof(dist1));
        while (!que.empty()) que.pop();
        que.push(x); vis[x] = true;
        while (que.size()) {
            int a = que.front(); que.pop();
            for (int i = head[a]; i != -1; i = edge[i].next) {
                int b = edge[i].to;
                if (!vis[b] && dist1[b] < dist1[a] + edge[i].val) {
                    dist1[b] = dist1[a] + edge[i].val;
                    if(ans < dist1[b]) {
                        ans = dist1[b]; s = b;
                    }
                    vis[b] = true; que.push(b);
                }
            }
        }
    }void bfs2(int x) {
        queue<int> que; ans = 0;
        memset(vis, false, sizeof(vis));
        memset(dist2, 0, sizeof(dist2));
        while (!que.empty()) que.pop();
        que.push(x); vis[x] = true;
        while (que.size()) {
            int a = que.front(); que.pop();
            for (int i = head[a]; i != -1; i = edge[i].next) {
                int b = edge[i].to;
                if (!vis[b] && dist2[b] < dist2[a] + edge[i].val) {
                    dist2[b] = dist2[a] + edge[i].val;
                    if(ans < dist2[b]) {
                        ans = dist2[b]; s = b;
                    }
                    vis[b] = true; que.push(b);
                }
            }
        }
    }
    int main() {
        int a, b, c, n, m;
        while (scanf("%d", &n) != EOF) {
            init();
            for (int i = 2; i <= n; i++) {
                scanf("%d%d", &a, &b);
                addEdge(i, a, b); addEdge(a, i, b);
            }
            bfs1(1); bfs1(s); bfs2(s);
            for (int i = 1; i <= n; i++) {
                printf("%d
    ", max(dist1[i], dist2[i]));
            }
        }
        return 0;
    }


  • 相关阅读:
    剑指offer十二之数值的整数次方
    剑指offer十一之二进制中1的个数
    剑指offer十之矩形覆盖
    剑指offer九之变态跳台阶
    剑指offer八之跳台阶
    程序员的生活观
    程序员,如何远离你的电脑
    生活管理实用技能
    分享共筑 : 伟大的理念
    技术人员,要学会关心别人
  • 原文地址:https://www.cnblogs.com/cniwoq/p/6770869.html
Copyright © 2011-2022 走看看