zoukankan      html  css  js  c++  java
  • Codeforces Round #256 (Div. 2) D. Multiplication Table 【二分】

    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Bizon the Champion isn't just charming, he also is very smart.

    While some of us were learning the multiplication table, Bizon the Champion had fun in his own manner. Bizon the Champion painted ann × m multiplication table, where the element on the intersection of the i-th row and j-th column equals i·j (the rows and columns of the table are numbered starting from 1). Then he was asked: what number in the table is the k-th largest number? Bizon the Champion always answered correctly and immediately. Can you repeat his success?

    Consider the given multiplication table. If you write out all n·m numbers from the table in the non-decreasing order, then the k-th number you write out is called the k-th largest number.

    Input

    The single line contains integers n, m and k (1 ≤ n, m ≤ 5·105; 1 ≤ k ≤ n·m).

    Output

    Print the k-th largest number in a n × m multiplication table.

    Examples
    input
    2 2 2
    
    output
    2
    
    input
    2 3 4
    
    output
    3
    
    input
    1 10 5
    
    output
    5
    
    Note

    A 2 × 3 multiplication table looks like this:

    1 2 3
    2 4 6
    
    

    如果直接进行搜索,时间复杂度是O(n*m),肯定会超时。利用在乘法表中,每一行的数字都是(1*m,2*m,3*m,……,n*m)(m是行号)这一特点对行进行二分,mid/m就是mid

    在这行中的排名。通过对每行进行搜索,就可以知道mid在鼠标中的总排名。

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    
    long long t, n, m;
    
    bool judge(long long x) {
        long long cnt = 0;
        for (long long i = 1; i <= m; i++) {
        	//注意x/i 大于n的情况 
            cnt += min(x/i, n);
        }
        return cnt >= t;
    }
    
    int main() {
        while (scanf("%lld%lld%lld", &n, &m, &t) != EOF) {
            long long lb = 1, ub = m*n;
            long long ans = 0;
            while (ub - lb >= 0) {
                long long mid = (lb + ub)>>1;
                if (judge(mid)) {
                    ans = mid;
                    ub = mid - 1;
                }
                else {
                    lb = mid + 1;
                }
            }
            printf("%lld
    ", ans);
        }
        return 0;
    }
    



     

  • 相关阅读:
    P3387 【模板】缩点 tarjan
    P2831 愤怒的小鸟 状压dp
    交流帖
    P3959 宝藏 模拟退火。。。
    B1060 [ZJOI2007]时态同步 dfs
    P1850 换教室 概率dp
    树链刨分(待修改)
    B3403 [Usaco2009 Open]Cow Line 直线上的牛 deque
    B3402 [Usaco2009 Open]Hide and Seek 捉迷藏 最短路
    B5248 [2018多省省队联测]一双木棋 状压dp
  • 原文地址:https://www.cnblogs.com/cniwoq/p/6770910.html
Copyright © 2011-2022 走看看