zoukankan      html  css  js  c++  java
  • POJ Problem 1423 Big Number 【stirling公式】

    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 27709   Accepted: 8837

    Description

    In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.

    Input

    Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 <= m <= 10^7 on each line.

    Output

    The output contains the number of digits in the factorial of the integers appearing in the input.

    Sample Input

    2
    10
    20

    Sample Output

    7
    19

    Source

    这道题考察stirling公式。当n充分大时,n!与sqrt(2πn * pow(n/e,n))十分接近。利用此公式,可以对阶乘有更好的估算。
    ,对于这道题,两边同时取以十为底的对数后,n!的位数就等于右边式子加上一。
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <queue>
    #include <stack>
    #include <iostream>
    #define MAX_N   100005
    #define MAX(a, b) (a > b)? a: b
    #define MIN(a, b) (a < b)? a: b
    using namespace std;
    const double e = 2.71828182845904523536;
    const double PI = 3.141592653589793238;
    
    double strling(int n) {
        return 0.5*log10(2*PI*n) + n*log10(n/e);
    }
    int main() {
        int t, m;
        scanf("%d", &t);
        while (t--) {
            scanf("%d", &m);
            printf("%d
    ", (int)strling(m) + 1);
        }
        return 0;
    }
    


  • 相关阅读:
    Java基础
    第11章 处理概括关系
    第10章 简化函数调用
    第9章 简化条件表达式
    第8章 重新组织数据(暂略)
    第7章 在对象之间搬移特性
    第6章 重新组织函数
    【剑指offer】57
    【每日一题-leetcode】45.跳跃游戏 ||
    【左神算法】随机+荷兰国旗优化版快排
  • 原文地址:https://www.cnblogs.com/cniwoq/p/6770939.html
Copyright © 2011-2022 走看看