zoukankan      html  css  js  c++  java
  • 杭电 Problem1787 GCD Again

    GCD Again

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2788    Accepted Submission(s): 1187


    Problem Description
    Do you have spent some time to think and try to solve those unsolved problem after one ACM contest?
    No? Oh, you must do this when you want to become a "Big Cattle".
    Now you will find that this problem is so familiar:
    The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little more difficult problem: 
    Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.
    This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.
    Good Luck!
     

    Input
    Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
     

    Output
    For each integers N you should output the number of integers M in one line, and with one line of output for each line in input. 
     

    Sample Input
    2 4 0
     

    Sample Output
    0 1
     

    Author
    lcy
    #include <cstdio>
    using namespace std;
    int euler(int x)
    {
        int ans = x;
        for(int i = 2; i * i <= x; i++)
            if(x % i == 0) {
                 ans = ans / i * (i - 1);
                 while(x % i ==0) x /= i;
            }
        if(x > 1) return ans=ans/x*(x-1);
        return ans;
    }
    int main()
    {
        int n;
        while (scanf("%d", &n) && n){
            printf("%d
    ", n - 1 - euler(n));
        }
        return 0;
    }


  • 相关阅读:
    第三个实验代码
    20165104孟凡斌-第五周作业
    20165104孟凡斌-第四周作业
    20165104孟凡斌-第二次java考试课下作业
    20165104孟凡斌-第三周作业
    20165104孟凡斌-第二次JAVA作业
    20165104孟凡斌-第一次Java考试课下作业
    2018-2019-1 《信息安全系统设计基础》 20165235 实验五 通信协议设计
    2018-2019-1 20165235 实验四 外设驱动程序设计
    20165235 实现pwd功能
  • 原文地址:https://www.cnblogs.com/cniwoq/p/6770966.html
Copyright © 2011-2022 走看看