zoukankan      html  css  js  c++  java
  • 杭电oj Problem-1013 Digital Roots

    Digital Roots

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 65477    Accepted Submission(s): 20417


    Problem Description
    The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are summed and the process is repeated. This is continued as long as necessary to obtain a single digit.

    For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.
     

    Input
    The input file will contain a list of positive integers, one per line. The end of the input will be indicated by an integer value of zero.
     

    Output
    For each integer in the input, output its digital root on a separate line of the output.
     

    Sample Input
    24 39 0
     

    Sample Output
    6 3
     
    #include <stdio.h>
    #include <string.h>
    int main()
    {
        char a[10000005];   //数组要开大
        int len, len1, k, i;
        while (scanf("%s", a) != EOF)
        {
            len = strlen(a);
            if (a[0] == '0' && len == 1)  break;
            int temp;
            int sum = 0;
            for(i = 0;i < len; i++)    sum += a[i] - '0';
            while (sum > 9) {
                k = 1;
                for (len1 = 1; ; len1++){
                    k *= 10;
                    if(k > sum)  break;
                }
                temp = 0;
                for(i = 0;i < len1; i++){
                    temp += sum % 10;
                    sum /= 10;
                }
                sum = temp;
            }
            printf("%d
    ", sum);
        }
        return 0;
    }
    
    

  • 相关阅读:
    LeetCode算法第一题
    基础题整理
    MongoDB 之 Limit 选取 Skip 跳过 Sort 排序 MongoDB
    MongoDB 之 $关键字 及 $修改器 $set $inc $push $pull $pop MongoDB
    mongodb的数据类型
    mongodb的增删改查
    session与cookie之间的关系
    Python 格式化输出的3种方式
    判断python字典中key是否存在的两种方法
    python实现忽略大小写对字符串列表排序的方法
  • 原文地址:https://www.cnblogs.com/cniwoq/p/6770970.html
Copyright © 2011-2022 走看看