zoukankan      html  css  js  c++  java
  • POJ 1655 Balancing Act[树的重心/树形dp]

    Balancing Act

    时限:1000ms

    Description

    Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T. 
    For example, consider the tree: 

    Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two. 

    For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number. 

    Input

    The first line of input contains a single integer t (1 <= t <= 20), the number of test cases. The first line of each test case contains an integer N (1 <= N <= 20,000), the number of congruence. The next N-1 lines each contains two space-separated node numbers that are the endpoints of an edge in the tree. No edge will be listed twice, and all edges will be listed.

    Output

    For each test case, print a line containing two integers, the number of the node with minimum balance and the balance of that node.

    Sample Input

    1
    7
    2 6
    1 2
    1 4
    4 5
    3 7
    3 1
    

    Sample Output

    1 2

    树的重心也叫树的质心。找到一个点,其所有的子树中最大的子树节点数最少,那么这个点就是这棵树的重心,删去重心后,生成的多棵树尽可能平衡。
    利用树形dp的思想,对节点u的子树进行遍历。和树的直径不同的是,如果子树的分割确定了,那么子树之外的节点必定在一颗树上,不需要在dfs一次。
    #include "stdio.h"
    #include "algorithm"
    #include "string.h"
    using namespace std;
    const int INF = 0x3f3f3f3f;
    const int maxn = 20000 + 10;
    bool vis[maxn];
    struct edge {
        int to, next;
    } e[maxn*2];
    int n, num[maxn];
    int size, cur;
    int tot = 0;
    int head[maxn];
    void add_edge(int u, int v) {
        e[tot].to = v; e[tot].next = head[u];
        head[u] = tot++;
    }
    void dfs(int u) {
        num[u] = 0;
        int tr = 0;
        vis[u] = true;
        for (int i = head[u]; i != -1; i = e[i].next) {
            int v = e[i].to;
            if (vis[v]) continue;
            dfs(v);
            num[u] += num[v] + 1;
            tr = max(num[v] + 1, tr);
        } 
        tr = max(n - num[u] - 1, tr); //剩下那棵树的大小
        if (tr < size || tr == size && cur > u) { //答案还要编号节点最小
            size = tr; cur = u;
        }
    }
    void init() {
        memset(vis, false, sizeof(vis));
        memset(head, -1, sizeof(head));
        tot = 0; size = INF;
    }
    int main(int argc, char const *argv[])
    {
        int T;
        scanf("%d", &T);
        while (T--) {
            init();
            scanf("%d", &n);
            for (int i = 0; i < n-1; i++) {
                int u, v;
                scanf("%d%d", &u, &v); add_edge(u, v);
                add_edge(v, u);
            }
            dfs(1);
            printf("%d %d
    ", cur, size);
        }
        return 0;
    }
     
  • 相关阅读:
    JSF大概介绍
    专门用于swing显示的工具类
    oracle 中查某表的所有列字段
    从实例谈OOP、工厂模式和重构
    C#中结构或类的嵌套 的方法
    怎样成为优秀的软件模型设计者
    Asp.NET编程时的几个小技巧
    在.net安装程序中部署oracle客户端全攻略
    在.NET中调用Oracle9i存储过程经验总结
    使用JNDI的一个容易忽略的错误
  • 原文地址:https://www.cnblogs.com/cniwoq/p/7247542.html
Copyright © 2011-2022 走看看