X问题
时限:1000MS
题意很明确,就是让你解一元同余方程组。题目的要求是找出小于等于(N)个数。
利用同余方程的性质,可以找到(X)的最小值(x_0),同时也知道(Xequiv t(mod\,m)),其中(m)为([m_0,m_1,cdots,m_M]),根据上面的条件可以得到(x_0+m*zleq N),然后将z解出来就是要的答案。
#include "iostream"
#include "stdio.h"
using namespace std;
typedef long long LL;
LL m[20], r[20];
void ext_gcd(LL a, LL b, LL &d, LL& x, LL& y) {
LL res;
if (!b){x = 1; y = 0; d = a;}
else {
ext_gcd(b, a%b, d, y, x);
y -= x*(a/b);
}
}
LL mod_line(LL a, LL b, LL m, LL& d) {
LL x, y; ext_gcd(a, m, d, x, y);
if (b%d) return -1;
LL e = x*(b/d)%(m/d) + (m/d);
return e%(m/d);
}
int main(int argc, char const *argv[])
{
int T;
LL N, M;
scanf("%d", &T);
while (T--) {
bool flag = false;
scanf("%lld%lld", &N, &M);
for (int i = 0; i < M; i++) scanf("%lld", m+i);
for (int j = 0; j < M; j++) scanf("%lld", r+j);
for (int i = 1; i < M; i++) {
LL d;
LL x0 = mod_line(m[i-1],r[i] - r[i-1], m[i], d);
if (flag || x0 == -1) {flag = true; break;}
r[i] = x0*m[i-1]+r[i-1];
m[i] = m[i-1]*(m[i]/d);
r[i] %= m[i];
}
if (flag) printf("0
");
else {
LL t = 0;
if (r[M-1] <= N) t =(N-r[M-1])/m[M-1] + 1;
if (t && r[M-1] == 0) t--; //去掉解是0的情况
printf("%lld
", t);
}
}
return 0;
}
Hello Kiki
时限:1000MS
这道题相比上道题就简单多了,直接计算,然后输出最小的。同样注意要是答案是0的时候的输出。
#include "bits/stdc++.h"
using namespace std;
typedef long long LL;
LL m[20], r[20];
void ext_gcd(LL a, LL b, LL &d, LL& x, LL& y) {
LL res;
if (!b){x = 1; y = 0; d = a;}
else {
ext_gcd(b, a%b, d, y, x);
y -= x*(a/b);
}
}
LL mod_line(LL a, LL b, LL m, LL& d) {
LL x, y; ext_gcd(a, m, d, x, y);
if (b%d) return -1;
LL e = x*(b/d)%(m/d) + (m/d);
return e%(m/d);
}
int main(int argc, char const *argv[])
{
int T; LL N;
int Kcase = 0;
scanf("%d", &T);
while (T--) {
bool flag = false;
scanf("%lld", &N);
for (int i = 0; i < N; i++) scanf("%lld", m+i);
for (int j = 0; j < N; j++) scanf("%lld", r+j);
for (int i = 1; i < N; i++) {
LL d;
LL x0 = mod_line(m[i-1],r[i] - r[i-1], m[i], d);
if (flag || x0 == -1) {flag = true; break;}
r[i] = x0*m[i-1]+r[i-1];
m[i] = m[i-1]*(m[i]/d);
r[i] %= m[i];
}
printf("Case %d: ", ++Kcase);
if (flag) printf("-1
");
else {
if (r[N-1] == 0) r[N-1] = m[N-1];
printf("%lld
", r[N-1]);
}
}
return 0;
}