zoukankan      html  css  js  c++  java
  • POJ-3304Segments[计算几何]

    Segments

    Description

    Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments on it, all projected segments have at least one point in common.

    Input

    Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing a positive integer n ≤ 100 showing the number of segments. After that, n lines containing four real numbers x1 y1 x2 y2 follow, in which (x1, y1) and (x2, y2) are the coordinates of the two endpoints for one of the segments.

    Output

    For each test case, your program must output "Yes!", if a line with desired property exists and must output "No!" otherwise. You must assume that two floating point numbers a and b are equal if |a - b| < 10-8.

    Sample Input

    3
    2
    1.0 2.0 3.0 4.0
    4.0 5.0 6.0 7.0
    3
    0.0 0.0 0.0 1.0
    0.0 1.0 0.0 2.0
    1.0 1.0 2.0 1.0
    3
    0.0 0.0 0.0 1.0
    0.0 2.0 0.0 3.0
    1.0 1.0 2.0 1.0

    Sample Output

    Yes!
    Yes!
    No!
    题意:
    求n条线段在一条直线上的投影是否有交点
    思路:
    假设存在这样的一个交点,那么过交点做投影直线的垂线,必定和所有的线段相交,然后就将问题化为构造一条和所有线段相交的直线。通过每次枚举两个线段的
    端点作出直线。
    #include "stdio.h"
    #include "iostream"
    #include "algorithm"
    #include "cmath"
    #include "string.h"
    using namespace std;
    const int maxn = 100 + 10;
    const double eps = 1e-8;
    struct Point {
        double x, y;
        Point(double x=0.0, double y=0.0) :x(x), y(y) {}
    };
    typedef Point Vector;
    Vector operator - (Point A,Point B) {return Vector(A.x-B.x,A.y-B.y);}
    int dcmp(double x) {if (fabs(x) < eps) return 0;return x < 0? -1: 1;} 
    double Dot(Vector A,Vector B) {return A.x*B.x+A.y*B.y;}
    double Length(Point A) {return sqrt(Dot(A,A));}
    double Cross(Vector A,Vector B) {return A.x*B.y-A.y*B.x;}
    
    int N;
    Point p[maxn][4];
    bool getcross(Point L, Point S) {
        if (dcmp(Length(S - L)) == 0) return false;
        for (int i = 0; i < N; i++) {
            if (dcmp(Cross(S-L, p[i][0]-L)*Cross(S-L, p[i][1]-L))>0) return false;
    
        }
        return true;
    }
    void solve() {
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++) {
                if (getcross(p[j][0],p[i][0])||getcross(p[j][1],p[i][0])||
                    getcross(p[j][1],p[i][1])||getcross(p[j][0],p[i][1])) {
                    printf("Yes!
    "); return ;
                }
            }
        }
        printf("No!
    ");
    }
    int main(int argc, char const *argv[])
    {
        int T;
        scanf("%d", &T);
        while (T--) {
            scanf("%d", &N);
            for (int i = 0; i < N; i++) {
                scanf("%lf%lf%lf%lf", &p[i][0].x, &p[i][0].y, &p[i][1].x, &p[i][1].y);
            }
            solve();
        }
        return 0;
    }
    /*
    1
    6
    75 93 42 45
    47 44 87 30
    10 55 36 14
    32 81 73 57
    29 84 75 23
    18 38 99 95
    */
  • 相关阅读:
    第四周进度条
    单元测试
    第四周开发日志(psp)
    软件工程个人作业03
    第四周课堂作业——单元测试
    进度条 第三周
    开发日志
    软件工程个人作业2
    《构建之法》阅读笔记01
    第一二周进度条
  • 原文地址:https://www.cnblogs.com/cniwoq/p/7620446.html
Copyright © 2011-2022 走看看